首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The low-temperature 2D variable range hopping conduction over the states of the upper Hubbard band is investigated in detail for the first time in multilayered Be-doped p-type GaAs/AlGaAs structures with quantum wells of 15-nm width. This situation was realized by doping the layer in the well and a barrier layer close to the well for the upper Hubbard band (A + centers) in the equilibrium state filled with holes. The conduction was of the Mott hopping type in the entire temperature range (4?0.4 K). The positive and negative magnetoresistance branches as well as of non-Ohmic hopping conduction at low temperature are analyzed. The density of states and the localization radius, the scattering amplitude, and the number of scatterers in the upper Hubbard band are estimated. It is found that the interference pattern of phenomena associated with hopping conduction over the A + band is qualitatively similar to the corresponding pattern for an ordinary impurity band, but the tunnel scattering is relatively weak.  相似文献   

2.
We calculate the density of states of a 2D electron gas in finite barrier height quantum wells with the explicit inclusion of the interface roughness effect. By using Feynman path-integral method, the analytic expression is derived. The results show that the 2D density of states is dependent on the RMS of the fluctuation potential. The interface roughness causes localized states below the subband edge. We also apply the theory to model the finite barrier height quantum wells in AlxGa1?xAs/GaAs.  相似文献   

3.
Scanning electron microscopy (SEM), X- ray diffraction (XRD), density (d), oxygen molar volume (Vm) and dc conductivity of different compositions of calcium vanadate glasses are reported. SEM exhibits a surface without any presence of a microstructure which is a characteristic of the amorphous phase. The overall features of these XRD curves confirm the amorphous nature of the present glasses. Density was observed to decrease with an increase in V2O5 content. The experimental results were analyzed with reference to theoretical models existing in the literature. It has been observed that the high-temperature conductivity data are consistent with Mott's nearest-neighbor hopping model. However, both Mott variable-range hopping (VRH) and Greaves intermediate range hopping models are found to be applicable. The hopping at high temperatures in the calcium vanadate glasses occurs by non-adiabatic process in contrast to the vanadate glasses formed with conventional network formers. The hopping model of Schnakenberg can predict the temperature dependence of the conductivity data. The percolation model of Triberis and Friedman applied to the small polaron hopping (SPH) regime is also consistent with data. The various model parameters such as density of states, hopping energy, etc., obtained from the best fits were found to be consistent with the glass compositions.  相似文献   

4.
The density of states of a two-dimensional square nanosystem composed of N × N aluminum atoms (N = 3?30) is calculated in the framework of the Hubbard model. It is demonstrated that, at a small parameter N, the density of states depends substantially on the number of atoms and on the position of a particular atom in the lattice. As the parameter N increases, the density of states for the vertex and edge atoms tends to the value of the density of states for the bulk atoms. The temperature of the system is implicitly included by specifying the energy of hopping in the initial Hamiltonian.  相似文献   

5.
We study a model for superconductor-normal-metal superlattices in which adjacent layers are coupled via single-particle hopping. Examples include the high-T c superconductor Bi2Sr2CaCu2O8+δ, where the BiO sheets seem to have normal metallic character. Using a BCS treatment, we investigate the influence of the interlayer hopping between the superconducting and the normal-metal slabs on the superconducting density of states, the tunneling characteristics for tunneling into both superconducting and normal-metal slabs as well as the temperature dependence of the London penetration depth.  相似文献   

6.
The conductivity, thermopower, and magnetoresistance of carbynes structurally modified by heating under a high pressure are investigated in the temperature range 1.8–300 K in a magnetic field up to 70 kOe. It is shown that an increase in the synthesis temperature under pressure leads to a transition from 1D hopping conductivity to 2D and then to 3D hopping conductivity. An analysis of transport data at T ≤ 40 K makes it possible to determine the localization radius a ~ (56?140) Å of the wave function and to estimate the density of localized states g(E F) for various dimensions d of space: g(E F) ≈ 5.8 × 107 eV?1 cm?1 (d=1), g(E F) ≈5×1014 eV?1 cm ?2 (d=2), and g(E F)≈1.1×1021 eV?1 cm?3 (d=3). A model for hopping conductivity and structure of carbynes is proposed on the basis of clusterization of sp 2 bonds in the carbyne matrix on the nanometer scale.  相似文献   

7.
Injection of tunneling electrons and holes from the probe tips of a scanning tunneling microscope was found to enhance the hopping motion of Cl atoms between neighboring dangling-bond sites of Si dimers on Si(1 0 0)-(2 × 1) surfaces, featured by the rate of hopping linearly dependent on the injection current. The hopping rate formed peaks at sample biases of VS∼+1.25 and −0.85 V, which agree with the peaks in the local density of states spectrum measured by scanning tunneling spectroscopy. The Cl hopping was enhanced at Cl-adsorbed sites even remote from the injection point. The Cl hopping by hole injection was more efficiently enhanced by sweeping the tip along the Si dimer row than by tip-sweeping along the perpendicular direction. Such anisotropy, on the other hand, was insignificant in the electron injection case. All of these findings can be interpreted by the model that the holes injected primarily into a surface band originated from the dangling bonds of Si dimers propagate quite anisotropically along the surface, and become localized at Cl sites somehow to destabilize the Si-Cl bonds causing hopping of the Cl atoms. The electrons injected into a bulk band propagate in an isotropic manner and then get resonantly trapped at Si-Cl antibonding orbitals, resulting in bond destabilization and hopping of the Cl atoms.  相似文献   

8.
The temperature dependences of the conductivities parallel and perpendicular to the layers in layered TlGaSe2 single crystals are investigated in the temperature range from 10 K to 293 K. It is shown that hopping conduction with a variable hopping length among localized states near the Fermi level takes place in TlGaSe2 single crystals in the low-temperature range, both along and across the layers. Hopping conduction along the layers begins to prevail over conduction in an allowed band only at very low temperatures (10–30 K), whereas hopping conduction across the layers is observed at fairly high temperatures (T?210 K) and spans a broader temperature range. The density of states near the Fermi level is determined, N F=1.3×1019eV·cm3)?1, along with the energy scatter of these states J=0.011 eV and the hopping lengths at various temperatures. The hopping length R along the layers of TlGaSe2 single crystals increases from 130 Å to 170 Å as the temperature is lowered from 30 K to 10 K. The temperature dependence of the degree of anisotropy of the conductivity of TlGaSe2 single crystals is investigated.  相似文献   

9.
赵媛媛  李炜  陶瑞宝 《中国物理 B》2012,21(2):27302-027302
Analytical studies of the effect of edge decoration on the energy spectrum of semi-infinite one-dimensional (1D) model and zigzag edged graphene (ZEG) are presented by means of transfer matrix method, in the frame of which the conditions for the existence of edge states are determined. For 1D model, the zero-energy surface state occurs regardless of whether the decorations exist or not, while the non-zero-energy surface states can be induced and manipulated through adjusting the edge decoration. On the other hand, the case for the semi-infinite ZEG model with nearest-neighbour interaction is discussed in the analogous way. The non-zero-energy surface states can be induced by the edge decoration and moreover, the ratio between the edge hopping and the bulk hopping amplitudes should be within a certain threshold.  相似文献   

10.
Carrier recombination dynamics in AlInGaN alloy has been studied by photoluminescence (PL) and time-resolved PL (TRPL) at various temperatures. The fast red-shift of PL peak energy is observed and well fitted by a physical model considering the thermal activation and transfer processes. This result provides evidence for the exciton localization in the quantum dot (QD)-like potentials in our AlInGaN alloy. The TRPL signals are found to be described by a stretched exponential function of exp[(−t/τ)β], indicating the presence of a significant disorder in the material. The disorder is attributed to a randomly distributed QDs or clusters caused by indium fluctuations. By studying the dependence of the dispersive exponent β on temperature and emission energy, we suggest that the exciton hopping dominate the diffusion of carriers localized in the disordered QDs. Furthermore, the localized states are found to have 0D density of states up to 250 K, since the radiative lifetime remains almost unchanged with increasing temperature.  相似文献   

11.
We derive an exact analytic expression for the three-body local correlations in the Lieb-Liniger model of 1D Bose gas with contact repulsion. The local three-body correlations control the thermalization and particle loss rates in the presence of terms which break integrability, as is realized in the case of 1D ultracold bosons. Our result is valid not only at finite temperature but also for a large class of nonthermal excited states in the thermodynamic limit. We present finite temperature calculations in the presence of external harmonic confinement within local density approximation, and for a highly excited state that resembles an experimentally realized configuration.  相似文献   

12.
We study diffusion-limited (on-site) pair annihilation A + A → 0 and (on-site) fusion A + A → A which we show to be equivalent for arbitrary space-dependent diffusion and reaction rates. For one-dimensional lattices with nearest neighbour hopping we find that in the limit of infinite reaction rate the time-dependent n-point density correlations for many-particle initial states are determined by the correlation functions of a dual diffusion-limited annihilation process with at most 2n particles initially. Furthermore, by reformulating general properties of annihilating random walks in one dimension in terms of fermionic anticommutation relations we derive an exact representation for these correlation functions in terms of conditional probabilities for a single particle performing a random walk with dual hopping rates. This allows for the exact and explicit calculation of a wide range of universal and non-universal types of behaviour for the decay of the density and density correlations.  相似文献   

13.
We present first-principles calculations of the vibrational density of states (VDOS), the specific heat and the mean-squared displacement of the five lowest-energy isomers of Au(13) and of two low-energy FeAu(12) nanoparticles. We find that the vibrational contributions to the Helmholtz energy do not affect the energy ordering of the isomers. As expected, for nanoparticles the vibrational density of states differs dramatically from the function proposed by the Debye model. We demonstrate that, for the nanoclusters we studied, the alternative calculations of the 'Debye temperature' yield significantly inconsistent results. We conclude that T(D) obtained from a particular thermodynamic property is neither applicable for deriving conclusions about other thermodynamic properties nor correlated with atomic bond strengths. Instead, in order to describe the temperature dependence of a nanoparticle's mean-squared displacement and its specific-heat capacity, what is necessary is its discrete phonon spectrum.  相似文献   

14.
Thin films of, N-N′diphenyl 1-4phenylene-diamineane are prepared using vacuum sublimation technique. The electrical conductivity from room temperature down to 127 K is studied. It is found that the conduction of charge carriers obeys T−1/2 dependence on temperature. The average hopping distance, hopping energy, density of states and their variation due to post-deposition heat treatment are studied. Schottky diodes are fabricated with gold as ohmic contact and aluminium as Schottky contact. From the observed current voltage characteristics the saturation current density, diode ideality factor and the barrier height are determined. Their variation with air annealing is also investigated.  相似文献   

15.
One–particle interchain hopping in a system of coupled Luttinger liquids is investigated by use of exact diagonalizations techniques [1]. We give numerical evidence that inter-chain coherent hopping (defined by a nonvanishing splitting) can be totally suppressed for the Luttinger liquid exponent α~ 0:4 or even smaller α values. The transverse conductivity is shown to exhibit a strong incoherent part even when coherent inter-chain hopping is believed to occur. Implications for the optical experiments in quasi-1D organic or high-T c superconductors is outlined.  相似文献   

16.
We study physical properties of photogenerated electron-lattice coupled states, polarons, in one-dimensional (1D) Peierls-Hubbard model with classical lattice distortion by means of the density matrix renormalization group method. The numerical results show novel midgap peaks in optical response spectra of polarons for large on-site Coulomb interaction U. These midgap peaks originate from charge-transfer excitations within the dimer in polarons.  相似文献   

17.
We have studied the extended Hubbard model with pair hopping in the atomic limit for arbitrary electron density and chemical potential. The Hamiltonian considered consists of (i) the effective on-site interaction U and (ii) the intersite charge exchange interactions I, determining the hopping of electron pairs between nearest-neighbour sites. The model can be treated as a simple effective model of a superconductor with very short coherence length in which electrons are localized and only electron pairs have a possibility of transferring. The phase diagrams and thermodynamic properties of this model have been determined within the variational approach, which treats the on-site interaction term exactly and the intersite interactions within the mean-field approximation. We have also obtained rigorous results for a linear chain (d = 1) in the ground state. Moreover, at T = 0 some results derived within the random phase approximation (and the spin-wave approximation) for d = 2 and 3 lattices and within the low-density expansions for d = 3 lattices are presented. Our investigation of the general case (as a function of the electron concentration n and as a function of the chemical potential μ) shows that, depending on the values of interaction parameters, the system can exhibit not only the homogeneous phases, superconducting (SS) and nonordered (NO), but also the phase separated states (PS: SS-NO). The system considered exhibits interesting multicritical behaviour including tricritical points.  相似文献   

18.
《Nuclear Physics B》1999,562(3):445-476
The random flux model (defined here as a model of lattice fermions hopping under the influence of maximally random link disorder) is analysed field theoretically. It is shown that the long range physics of the model is described by the supersymmetric version of a field theory that has been derived earlier in connection with lattice fermions subject to weak random hopping. More precisely, the field theory relevant for the behaviour of n-point correlation functions is of non-linear σ model type, where the group GL(n|n) is the global invariant manifold. It is argued that the model universally describes the long range physics of random phase fermions and provides further evidence in favour of the existence of delocalised states in the middle of the band in two dimensions. The same formalism is applied to the study of non-Abelian generalisations of the random flux model, i.e. N-component fermions whose hopping is mediated by random U(N) matrices. We discuss some physical applications of these models and argue that, for sufficiently large N, the existence of long range correlations in the band centre (equivalent to metallic behaviour in the Abelian case) can be safely deduced from the RG analysis of the model.  相似文献   

19.
The three-band Emery model is reduced to a single-particle quantum model of Falicov-Kimball type, by allowing only up-spins to hop, and forbidding double occupation by projection. It is used to study the effects of geometric obstruction on mobile fermions in thermodynamic equilibrium. For low hopping overlap, there appears a plateau in the entropy, due to charge correlations, and related to real-space disorder. For large overlap, the equilibrium thermopower susceptibility remains anomalous, with a sign opposite to the one predicted from the single-particle density of states. The heat capacity and non-Fermi liquid response are discussed in the context of similar results in the literature. All results are obtained by evaluation of an effective single-particle free-energy operator in closed form. The method to obtain this operator is described in detail.  相似文献   

20.
M. Pfuff  J. Appel 《Surface science》1977,66(2):507-526
For a nondegenerate narrow energy band spanned by a semiinfinite chain of three-dimensional atoms, the electronic potential and the electron density of states are calculated selfconsistently in the vicinity of the chain end. The electron-electron interaction is treated in the Hartree-Fock approximation, using the Green function method. The results for the potential and the density of states are discussed in terms of the parameters which determine the bulk electronic structure, such as the Fermi energy EF and the intra- and interatomic Coulomb repulsion k0 and K1. Futhermore, the self consistent method is extended to an impurity atom at the chain end. The existence of bonding and antibonding surface states is found to depend on both the bulk and impurity parameters, such as the intraatomic Coulomb repulsion Uα and the nearest neighbour hopping element T.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号