首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thickness dependent crystallization behavior of thin amorphous Ge2Sb2Te5(GST) films sandwiched between different cladding materials has been investigated based on a thermodynamic model. It is revealed that there is a critical thickness below which the crystallization cannot occur. The critical thickness is determined by the energy difference Δγ between the crystalline GST/substrate interface energy and the amorphous GST/substrate interface energy, the melting enthalpy, and the mole volume. The calculated result is in good agreement with the experiments. Furthermore, the crystallization temperature is also affected by interface energy difference Δγ. Larger Δγ gives rise to a higher crystallization temperature, and vice versa. This impact becomes stronger as the film thickness is decreased.  相似文献   

2.
Strong dependence of the crystal orientation, morphology, and melting temperature (Tm) on the substrate is observed in the semicrystalline polyethylene thin films. The Tm decreases with the film thickness decrease when the film is thinner than a certain critical thickness, and the magnitude of the depression increases with increasing surface interaction. We attribute the large Tm depression to the decrease in the overall free energy on melting, which is caused by the substrate attraction force to the chains that competes against the interchain force which drives the chains to crystallization.  相似文献   

3.
The interface of hydrogenated amorphous carbon films grown on single crystal silicon by plasma assisted chemical vapor deposition from methane was studied by angle-resolved X-ray photoelectron spectroscopy. The effect of varying RF power for films grown on a RF-powered electrode was investigated, as well as the effect of varying pulse height for films grown under high voltage pulsed biasing on a non-RF-powered electrode. The spectra of the films deposited at the powered electrode revealed the presence of an approximately stoichiometric silicon carbide layer at the interface. In contrast, the interfacial carbide for films formed at the pulsed biased electrode was found to be nonstoichiometric and silicon rich, which could be ascribed to the relatively much smaller high-energy ion flux to the substrate. The effective thickness of the interfacial layer, as determined from the angle-resolved spectra, however, correlated well with the kinetic energy of plasma ions impinging on the silicon substrate, regardless of the average stoichiometry. The thickness varied from ˜ 4 to 12 Å for kinetic energies ranging from ˜ 150 to 1100 eV. The results indicate that the thickness of the interfacial carbide is determined by the average penetration depth of plasma ions into the silicon substrate, as controlled by their kinetic energy.  相似文献   

4.
The extent to which energy transfer occurs in electronically excited organic adlayer films on dielectric surfaces is investigated. Migration and subsequent trapping of the energy in the film are observed by pumping the singlet state of an organic adlayer of benzophenone and by monitoring the phosphorescence and fluorescence lifetimes. To observe the effects of adsorption, benzophenone was chosen as the adlayer because the energies of its well characterizedn, carbonyl states are remarkably sensitive to solvent interactions. Upon excitation with a nitrogen laser, the perturbation on the electronic states of benzophenone by the substrate caused the emergence of the normally absent fluorescence from the adlayer traps at the interface between the surface of the dielectric substrate and the adlayer. Energy transfer to this interface was observed as a function of film thickness. On the surface of a single crystal of an organic crystal, naphthalene, energy transfer from the adlayer to the substrate was observed, whereas such transfer was not energetically possible with the other dielectric surfaces.  相似文献   

5.
TiO2/PSS nano-structured multilayer films are fabricated by a layer-by-layer self-assembly method, and the deposition process and interface structure of films are studied in detail by slow positron spectroscopy. The results indicate that injection energy of positron at the interface between the substrate and the film shows a linear dependence on the number of bilayer, which suggests that the repeatability of the depositing process is good, and the thickness of films shows a linear increase with the number of bilayers adding. The calculated result of the film thickness shows that there is an overlay between the adjacent TiO2 nanoparticle layers.  相似文献   

6.
7.
The effect of crystallinity on proton conductivity in amorphous, single crystal and polycrystal yttrium-doped barium zirconate (BYZ) thin films grown 120 nm in thickness on amorphous (quartz) and single crystal MgO(100) substrates has been studied. The conductivity was measured in the temperature range of 150 ~ 350 °C. By altering the film deposition temperature, varying degrees of crystallization and microstructure were observed by x-ray diffraction and transmission electron microscopy. The epitaxial BYZ film grown on MgO(100) substrate at 900 °C showed the highest proton conductivity among other samples with an activation energy of 0.45 eV, whereas polycrystalline and amorphous BYZ films showed lower conductivities due to grain boundaries in their granular microstructure.  相似文献   

8.
Crystallization in ultrathin Poly(Ethylene Oxide)/Poly(Methyl Methacrylate) (PEO/PMMA) blend films with thickness of ca. 10 nm was investigated by means of microscopic and in situ spectroscopic methods. It was revealed that the blend films undergo a phase ordering in a humid atmosphere before or during crystallization, with PEO de-mixing with PMMA and segregating to the free film interface on the PMMA layer. The de-mixed PEO chains crystallize into a fractal-like morphology by a diffusion-limited process, and the crystal growth is 1-dimensional with Avrami exponent n ≈ 1, resulting in flat-on crystal lamellae with the PEO chains oriented normal to the film plane.  相似文献   

9.
《Surface science》1996,367(1):L13-L18
The amorphous to crystalline ice phase transition is studied by measuring the water desorption rate from nanoscale thin films of water vapor deposited on Au(111) and Ru(001) single crystal metallic substrates. The desorption kinetics are substrate dependent and suggest strongly that the film morphology is governed by the hydrophilicity of the substrate. The crystallization kinetics are independent of substrate but depend strongly on both temperature and film thickness and are consistent with a spatially random nucleation and isotropic growth model.  相似文献   

10.
Shape memory alloy Ni-Ti thin films as sputtered are amorphous if the substrate is not intentionally heated during deposition. Therefore, these films have to be heat treated to induce crystallization in order to exhibit the shape-memory effect. Several films have been prepared by dc magnetron sputtering and then studied concerning the influence of the type of substrate (single-crystal Si, polycrystalline Si) on the crystallization kinetics and the final structure. The structural development of the films during crystallization (at a constant temperature of 430 °C) has been studied by X-ray diffraction in grazing incidence geometry off-plane (GIXD) at a synchrotron-radiation beamline. These experiments allow us to establish a correlation between the deposition conditions and the kinetics of crystallization. For films deposited at an electrode distance of 70 mm on a Si(100) substrate, a longer crystallization time is needed compared with films obtained at 40 mm, for otherwise fixed deposition parameters. The analysis of the nucleation kinetics by using the Johnson–Mehl–Avrami equation leads to exponents between 2.6 and 3. The presence of an intermediate layer of poly-Si drastically enhances the crystallization process. Additionally, ex situ annealing of identical samples at 500 °C during 1 h and complementary characterization of the structure and morphology of the films by cross-sectional transmission electron microscopy and selected-area electron diffraction were performed. The temperature dependence of the electrical resistivity was measured, identifying the phase transformation temperature ranges. An increase of the overall resistivity with the precipitation of Ni4Ti3 has been detected. Results obtained by X-ray reflectometry and GIXD suggest that during crystallization excess nickel is driven into an amorphous region ahead of the crystal/amorphous interface, thus leading to a higher concentration of Ni at the surface and further precipitation of Ni4Ti3. PACS 81.15.Cd; 61.10.Nz; 68.55.Jk  相似文献   

11.
NiTi shape memory alloy thin films are deposited on pure Cu substrate at substrate ambient temperatures of 300 °C and 450 °C. The surface and interface oxidation of NiTi thin films are characterized by X-ray photoelectron spectroscopy (XPS). After a subsequent annealing treatment the crystallization behavior of the films deposited on substrate at different temperatures is studied by X-ray diffraction (XRD). The effects of substrate temperature on the surface and interface oxidation of NiTi thin films are investigated. In the film surface this is an oxide layer composed of TiO2. The Ni atom has not been detected on surface. In the film/substrate interface there is an oxide layer with a mixture Ti2O3 and NiO in the films deposited at substrate temperatures 300 °C and 450 °C. In the films deposited at ambient temperature, the interface layer contains Ti suboxides (TiO) and metallic Ni.  相似文献   

12.
Crystallization kinetics of the sputtered SmCo based permanent magnetic films was investigated by differential scanning calorimeter, x-ray diffraction, and atomic force microscope methods. The results show that the apparent activation energy for crystallization is observed as 173.7 kJ/mol, and the local activation energy for crystallization decreases with increasing crystal phase transformation fraction in non-isothermal crystallization. For isothermal crystallization, the apparent activation energy for crystallization is 159.8 kJ/mol. The local activation energy for crystallization exhibits non-monotonic dependence on the crystal phase transformation fraction. The crystallization mechanism is obtained from the investigation of Avrami exponent and microstructure.  相似文献   

13.
GaN薄膜材料广泛应用于发光二极管(LED),激光二极管(LD)等光电器件。但是GaN基器件的制备与应用以及器件推广很大一部分取决于其器件的价格,常用的方式是在单晶蓝宝石衬底上沉积制备GaN薄膜样品,单晶蓝宝石衬底晶向择优,可以制备出高质量的GaN薄膜样品,但是单晶蓝宝石衬底价格昂贵,一定程度上限制了其GaN基器件推广使用。如何在廉价衬底上直接沉积高质量的GaN薄膜,满足器件的要求成为研究热点。石英玻璃价格廉价,但是属于非晶体,没有择优晶向取向,很难制备出高质量薄膜样品。本研究采用等离子体增强金属有机物化学气相沉积系统在非晶普通石英衬底上改变氮气反应源流量低温制备GaN薄膜材料。制备之后采用反射高能电子衍射谱、X射线衍射光谱、室温透射光谱和光致光谱对制备的薄膜进行系统的测试分析。其结果表明:在氮气流量适当的沉积参数条件下,所制备的薄膜具有高C轴的择优取向,良好的结晶质量以及优异的光学性能。  相似文献   

14.
采用X射线衍射和X射线光电子能谱实验手段对不同厚度的NiTi薄膜相变温度的变化进行了分析.结果表明在相同衬底温度和退火条件下,3?μm厚度的薄膜晶化温度高于18?μm厚度的薄膜.衬底温度越高,薄膜越易晶化,退火后薄膜奥氏体相转变温度As越低.薄膜的表面有TiO2氧化层形成,氧化层阻止了Ni原子渗出;膜与基片的界面存在Ti2O3和NiO.由于表面和界面氧化层的存在,不同厚度的薄膜内层的厚度也不同,因而薄膜越薄,Ni原子的含量就越高.Ni原子的含量的不同会影响薄膜的相变温度. 关键词: NiTi合金薄膜 X射线衍射 相变 X射线光电子能谱  相似文献   

15.
Poly(ethylene oxide) (PEO) in the semi-crystalline state shows a reversible surface crystallization and melting; a temperature decrease leads to a certain crystal thickening, a temperature increase reversely to an expansion of the amorphous intercrystallite layers. Dynamic calorimetry provides a means to investigate the kinetics of the process. The structural rearrangement in the region of the crystalline-amorphous interface can only be accomplished if the chains can slide through the crystallites. One therefore expects the associated time to change with the crystallite thickness. Variations of the crystal thickness of PEO can be achieved by choosing different crystallization temperatures. We studied the effect of the crystal thickness employing temperature-modulated differential scanning calorimetry and heat wave spectroscopy, and by carrying out small-angle X-ray scattering experiments for the structural characterization. The effect of the crystal thickness is clearly observed. Results indicate that the sliding diffusion through the crystallites takes place by helical jumps of whole stems. Data yield the activation energy per unit length of the stems. Received 20 April 2001 and Received in final form 13 August 2001  相似文献   

16.
Size-controlled nanocrystalline silicon (ncSi) has been prepared from aSiNx/aSi:H multilayers by pulsed laser induced crystallization. Transmission electron microscopy (TEM) analyses show that the growth of ncSi is constrained by the aSiNx/aSi:H interface, and the size of ncSi is controlled by the laser energy density and the aSi sublayer thickness when the aSi sublayer thickness is less than 10 nm. On the basis of the experimental results, we discuss the transitional process from the spherical shape to the cylindrical shape in the growth model of ncSi crystallization. The constrained effect for the crystal growth increases with a decrease of the aSi sublayer thickness. The critical thickness of the aSi sublayer for constrained crystallization can be determined by the present model. Moreover, the increase of the crystallization temperature in the ultra-thin aSi sublayer can be explained. PACS 68.65.+g; 81.40.Ef; 68.35.-p; 61.16.Bg; 61.46.+w  相似文献   

17.
The effects of preheating laser power and pulse laser energy on the size and crystallinity of laterally grown grains by dual-laser crystallization of amorphous silicon (a-Si) films on borosilicate glass substrates were investigated. Plasma-enhanced chemical vapor deposition was adopted for the deposition of the a-Si films in order to reduce the process temperature and thus the diffusion of metal impurities from the glass substrate to the deposited a-Si films. It was found that the preheating laser power is critical in enhancing grain size, whereas the pulse laser energy is closely related to crystal quality. It is demonstrated that by properly adjusting the process conditions, laterally grown grains of 50-μm size could be obtained.  相似文献   

18.
We used dynamic Monte Carlo simulations to investigate the crystallization kinetics of flat-on lamellar polymer crystals in variable thickness films. We found that the growth rates linearly reduced with decreasing film thickness for the films thinner than a transition thickness dt , while they were constant for the films thicker than dt . Moreover, the mean stem lengths (crystal thickness) we calculated decreased with film thickness in a similar way to the growth rates, and the intramolecular crystallinities we calculated confirmed the film thickness dependence of the crytsal thickness. Besides, the crystal melting rates in thin films were calculated and increased with decreasing film thickness. We proposed a new interpretation on the film thickness dependence of the crystal growth rate in thin films, suggesting that it is dominated by the crystal thickness in terms of the driving force term (l–l min) expressed by Sadler, rather than the chain mobility based on experiments. The crystal thickness can determine whether a crystal grows or melts in a thin film at a fixed temperature, indicating the reversibility between the crystal growth and melting.  相似文献   

19.
In order to clarify the edge and interface effect on the adhesion energy between graphene(Gr)and its substrate,a theoretical model is proposed to study the interaction and strain distribution of Gr/Si system in terms of continuum medium mechanics and nanothermodynamics.We find that the interface separation and adhesion energy are determined by the thickness of Gr and substrate.The disturbed interaction and redistributed strain in the Gr/Si system induced by the effect of surface and interface can make the interface adhesion energy decrease with increasing thickness of Gr and diminishing thickness of Si.Moreover,our results show that the smaller area of Gr is more likely to adhere to the substrate since the edge effect improves the active energy and strain energy.Our predictions can be expected to be a guide for designing high performance of Grbased electronic devices.  相似文献   

20.
李铁军  刘晶儒  王丽戈  楼祺洪 《光子学报》1999,28(12):1080-1085,1090
利用脉冲激光沉积结合计算机辅助衬底扫描技术制备了尺寸为70×66mm、均匀性为±5%的类金刚石薄膜,薄膜显微硬度最高为27GPa,薄膜结合强度达到20000转;在制备大尺寸薄膜的过程中,衬底扫描速度越慢,薄膜的均匀性越好;在应用传统清洗等方法的基础上,认为增大镀膜粒子的能量对于提高薄膜和衬底的结合强度是非常重要的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号