首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The poor knowledge of the spin-dependent neutron scattering length of 3He has until now handicapped nuclear four body theory and the interpretation of excitations in the quantum liquid. We have measured, for the first time directly, the real part of the bound incoherent neutron scattering length, bi′ of 3He. A neutron spin echo spectrometer was used to detect pseudomagnetic precession of polarised neutrons passing through polarised 3He gas. Any absolute calibrations of sample and beam parameters were avoided using simple transmission measurements with non-polarised neutrons. The only a priory information required was the spin-dependent neutron absorption cross section of 3He. The result is bi′ = -2.365(20) fm, which reduces the prior uncertainty by a factor 30. The corresponding new value of the bound incoherent scattering cross section is σi = 1.532(12) barn. Including the known value of the coherent neutron scattering length, we obtain new values for the real parts of the free triplet and singlet neutron scattering lengths, a-′ = 7.370(58) fm and a+′ = 3.278(53) fm.  相似文献   

2.
The magnetic properties of polycrystalline PrRh2Si2 sample have been investigated by neutron diffraction measurements. Antiferromagnetic transition with an anomalously high ordering temperature (TN∼68 K) is clearly observed in magnetic susceptibility, specific heat, electrical resistivity and neutron diffraction measurements. Neutron diffraction study shows that Pr3+ ions carry an ordered moment of 2.99(7)μB/Pr3+ and align along the crystallographic±c-directions for the ions located at the (0,0,0) and positions. The magnetoresistance at 2 K and 10 T is rather large (∼35%).  相似文献   

3.
The structural properties of TiO2 nanotubes with rapid thermal annealing (RTA) and traditional thermal annealing in O2 were studied by X-ray diffraction (XRD) and Raman scattering measurements. From analyzing the line width of XRD and the correlation length of the Raman peak, we demonstrate that RTA can be an effective tool for amorphous-anatase transformation in TiO2 nanotubes. The Raman peak redshifts and reduces its line width after thermal annealing and RTA, which may involves the reduction of oxygen-related defects.  相似文献   

4.
Improved knowledge of the real part of the neutron scattering length of 3He is important for further development of nuclear few-body theory, as well as for a thorough understanding of neutron scattering off quantum liquids. The real part of the bound incoherent neutron scattering length bi' has recently been measured directly with an experimental uncertainty of better than 1% by means of spin echo spectrometry. The uncertainty of the more fundamental bound multiplet scattering lengths b±' is thus limited by today's 1.2% uncertainty of the spin-independent coherent part bc'. Employing the skew-symmetric perfect crystal Si-interferometer at the S18 experimental site at ILL, Grenoble, we have re-measured the real part of the bound coherent neutron scattering length bc' of 3He. Our result bc' = 6.010(21)fm exhibits a significant deviation compared to the latest accepted value bc' = 5.74(7)fm (H. Kaiser, H. Rauch, G. Badurek, W. Bauspiess, U. Bonse, Z. Phys. A 291, 231 (1979)). Including the known value of the incoherent neutron scattering length, we obtain new values for the real parts of the free singlet and triplet scattering lengths, a-' = 7.573(30)fm and a+' = 3.480(18)fm. Our result contravenes by more than 7 standard deviations the measurement of the same physical quantity that has recently been performed by a group at NIST in a very similar experiment (P.R. Huffman, D.L. Jacobson, K. Schoen, M. Arif, T.C. Black, W.M. Snow, S.A. Werner, Phys. Rev. C 70, 014004 (2004)) which yielded bc' = 5.853(7)fm.  相似文献   

5.
The magnetic and structural properties of epitaxial Fe films grown on Si(1 1 1) are investigated by polarized neutron reflectometry (PNR) at room temperature. The influence of different types of interfaces, Fe/Si, Fe/FeSi2 and Au/Fe on the magnetic properties of Fe films deposited by molecular beam epitaxy onto Si(1 1 1) are characterized. We observe a drastic reduction of the magnetic moment in the entire Fe film deposited directly on the silicon substrate essentially due to strong Si interdiffusion throughout the whole Fe layer thickness. The use of a silicide FeSi2 template layer stops the interdiffusion and the value of the magnetic moment of the deposited Fe layer is close to its bulk value. We also evidence the asymmetric nature of the interfaces, Si/Fe and Fe/Si interfaces are magnetically very different. Finally, we show that the use of Au leads to an enhancement of the magnetization at the interface.  相似文献   

6.
Small angle neutron scattering (SANS) and its contrast-matching variant are employed in order to determine structural properties (inter-pillar distances and mass/surface fractal dimensions of the clay layers and pillars) of a series of smectite natural clays (montmorillonite, beidellite, and bentonite) and their pillared and pillared/ion-exchanged analogues. Moreover, a comparative analysis with the adsorption data is carried out on the basis of a systematic study of the structural changes induced by a particular treatment or modification (e.g. pillaring) of the clay systems.  相似文献   

7.
In this work, the results of synthesis and characterization of single wall carbon nanotubes (SWCNTs) functionalized by two surfactants (sodium dodecylbenzene sulfonate and melamine sulfonate superplasticiser) have been presented. The properties of pristine and modified SWCNTs have been compared by different techniques: Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). Raman analysis reveals the changes in vibrational spectra of SWCNTs after modification by different surfactant molecules. FTIR analysis has shown the presence of sulfonate group which is strong evidence for nanotube modification. AFM analysis has shown separation of big single wall carbon nanotube bundles into thin bundles of them.  相似文献   

8.
The possibility of atomic scale mass delivery by bend kink in single walled carbon nanotube was investigated with the aid of molecular dynamics simulation. By keeping the bending angle while moving the tube end, the encapsulated atomic scale mass such as atom, molecule and atom group were successfully delivered through the nanotube. The van der Waals interaction between the encapsulated mass and the tube wall provided the driving force for the delivery. There were no dramatic changes in the van der Waals interaction, and a smooth and steady delivery was achieved when constant loading rate was applied. The influence of temperature on the atom group delivery was also analyzed. It is found raising temperature is harmful to the smooth movement of the atom group. However, the delivery rate can be promoted under higher temperature when the atom group is situated before the kink during the delivery.  相似文献   

9.
Single-phase Ba(Mg1/3Ta2/3)O3 thin films were prepared by radiofrequency plasma beam assisted pulsed laser deposition (RF-PLD) starting from a bulk ceramic target synthesized by solid state reaction. Atomic force microscopy, X-ray diffraction and spectroscopic ellipsometry were used for morphological, structural and optical characterization of the BMT thin films. The X-ray diffraction spectra show that the films exhibit a polycrystalline cubic structure. From spectroscopic ellipsometry analysis, the refractive index varies with the thin films deposition parameters. By using the transmission spectra and assuming a direct band to band transition a band gap value of ≈4.72 eV has been obtained.  相似文献   

10.
In this work the preparation, characterization and photoluminescence studies of pure and copper-doped ZnS nanophosphors are reported, which are prepared by using solid-state reaction technique at a temperature of 100 °C. The as-obtained samples were characterized by X-ray diffraction (XRD) and UV-VIS Reflectance spectroscopy. The XRD analysis confirms the formation of cubic phase of undoped as well as Cu2+-doped ZnS nanoparticles. Furthermore it shows that the average size of pure as well as copper-doped samples ranges from 15 to 50 nm. The room-temperature PL spectra of the undoped ZnS sample showed two main peaks centered at around 421 and 450 nm, which are the characteristic emissions of interstitial zinc and sulfur vacancies, respectively. The PL of the doped sample showed a broad-band emission spectrum centered at 465 nm accompanied with shoulders at around 425, 450 and 510 nm, which are the characteristic emission peaks of interstitial zinc, sulfur vacancies and Cu2+ ions, respectively. Our experimental results indicate that the PL spectrum confirms the presence of Cu2+ ions in the ZnS nanoparticles as expected.  相似文献   

11.
Colloidal CdSe nanoparticles (NPs), passivated with CdS and ZnS, were characterized by resonant Raman scattering and photoluminescence (PL). The effect of the passivating shell, its volume and formation procedure on optical and vibrational spectra is discussed. Analyzing the Raman peaks due to optical phonons inside the core and those related to the core-shell interface allows some understanding of the relation between the core-shell structure and its PL properties to be achieved. In particular, a compositional intermixing at the core/shell interface of the NPs was deduced from the Raman spectra, which can noticeably affect their PL intensity.  相似文献   

12.
Molybdenum nitride Mo2Nx films were grown on MgO(0 0 1) and on α-Al2O3(0 0 1) substrates by molecular beam epitaxy under nitrogen radical irradiation. X-ray photoelectron spectroscopy revealed that the composition of the film varied in the range of Mo2N1.4-Mo2N2.8 depending on the growth temperature. The deposition at 973 K gave well-crystallized films on both substrates. The high-resolution reciprocal space mapping by X-ray diffraction showed that the nitrogen-rich γ-Mo2N crystalline phase (the composition: Mo2N1.4) was epitaxially grown on MgO at 923 K with a slight tetragonal distortion (a = 0.421 and c = 0.418 nm) to fit the MgO lattice (a = 0.421 nm). On α-Al2O3(0 0 1), nitrogen-rich γ-Mo2N (Mo2N1.8) was grown at 973 K with (1 1 1) planes parallel to the substrate surface. X-ray diffraction analysis with a multi-axes diffractometer revealed that the γ-Mo2N on α-Al2O3(0 0 1) had a slight rhombohedral distortion (a = 0.4173(2) and α = 90.46(3)°). Superconductivity was observed below 2.8-3 K for the films grown at 973 K on MgO and on α-Al2O3(0 0 1).  相似文献   

13.
Using high-resolution time-of-flight neutron powder diffraction, the crystal structure of BaPbO3 has been reinvestigated at room temperature and 4.2 K. By comparing different structural models, i.e. the orthorhombic Imma and the monoclinic I2/m, it is concluded that the former one describes correctly the structure of BaPbO3, and no ImmaI2/m phase transition exists in the temperature range investigated. The apparent monoclinic distortion is likely due to the existence of twins that introduce the micro strain resulting in anisotropic line broadening of the observed profiles.  相似文献   

14.
An exact solution of electromagnetic wave scattering by a time reversal symmetry broken topological insulator sphere is researched. According to the constitute relations of topological insulator, we modified magnetic vector potential and electric vector potential of standard Mie theory and derived scattered electromagnetic fields and scattered coefficients. Numerical results show that, when the time reversal symmetry is broken, the extinction efficiencies and the scattering efficiencies are influenced by topological magneto-electric polarizability.  相似文献   

15.
Measurements are performed to study the electron impact energy dependence of doubly differential bremsstrahlung yields (DDBY) and of characteristic Ti Kα line yields produced from sub-relativistic electrons (10–25 keV) colliding with a thick Ti (Z = 22) target. The emitted radiation is detected by a Si-PIN photo-diode detector with energy resolution (FWHM) of 180 eV at 5.9 keV. The measured data of DDBY are compared with the results predicted by Monte-Carlo (MC) simulations using the general purpose PENELOPE code. A reasonable agreement is found between experimental and simulation results within the experimental uncertainty of measurements of 12%. Characteristic Ti Kα yields are obtained for the considered impact energy range and they are compared with the existing theoretical results. A good agreement is found between the present measurements and the theoretical calculations. Furthermore, data are presented for impact energy dependence of the ratio Kα/(Kα+ Kβ) of a thick Ti target under impact of 10–25 keV electrons. The ratio shows a very weak dependence on impact energy in the studied range. The average value of the ratio is found to be 0.881 ± 0.003.  相似文献   

16.
Self-assembled Ni-doped zinc oxide (Zn1−xNixO, x = 0.05, 0.10, 0.15, i.e., ZnNiO, nominal composition) nanorod arrays vertically grown on the ZnO seed layer covered glass along [0 0 1] direction were synthesized by hydrothermal method. Their images and structures have been characterized by scan electron microscope (SEM), X-ray diffraction (XRD) and Raman spectra, showing that Ni doping is beneficial to the formation of ZnO nanorods with hexagonal cross section and the enhancement of ZnO crystal quality. X-ray photoemission spectroscopy (XPS) study further demonstrated that Ni atoms were successfully doped into ZnO lattices. The photoluminescence (PL) spectra of ZnNiO samples show near bandedge emission (NBE) peaks at about 380 nm at a low excitation power and the NBE peak position redshifts while its intensity continuously increases with the increase of Ni doping concentration. With the excitation power increasing, the NBE peak redshifts from 380 nm to about 400 nm for ZnNiO nanorod arrays. The NBE mechanisms for ZnNiO nanorod arrays have been discussed, which is helpful for understanding their room temperature ferromagnetisms.  相似文献   

17.
This work reports the synthesis of indium oxide nanoparticles and their thermal, structural, microstructural and optical characterization. The preparation method is based on a surfactant-free room temperature soft chemistry route. Spherical indium oxide nanoparticles (about 8 nm in diameter) were obtained after thermal treatment of gels at 400 °C for 2 h, as shown by X-ray diffraction experiments and nitrogen adsorption measurements. Transmission electron microscopy observations confirm the single-crystalline nature of the produced nanoparticles. The photoluminescence emission spectrum at room temperature shows a broad peak with onset at approximately 315 nm as a result of quantum size effect as revealed by small-angle X-ray scattering.  相似文献   

18.
Pt-doped titanium dioxide or titania (TiO2) films were grown by rf magnetron sputtering and then annealed in the conventional thermal annealing (CTA) process. Raman spectroscopy was used to characterize the structure of the films deposited. The effect of sputtering parameters was studied in focus of the nucleation sites energies (influenced by the substrate temperature) and substrate bombardment energies (influenced by the sputtering pressure or rf power). The X-ray diffractions technique was used to investigate the structural variation after the films were annealed at different temperatures. It was found that 0.75% Pt-doped TiO2 film exhibits better thermal stability and smaller grain sizes than 0.35% Pt-doped TiO2 film, suggesting that the suppression of crystallization can be expected with a proper increase of Pt doping level. And the obtained optical transparency higher than 80% even after annealing has demonstrated the films’ prospect for future developments.  相似文献   

19.
To extend the applicability of ZnO, with the bulk band gap of about 3.3 eV, into deep UV region, we have grown a multilayer of alumina capped ZnO quantum dots of mean in-plane sizes in the range of ∼1.8-3.6 nm at room temperature using alternate Pulsed Laser Deposition. Size dependent blue shift of the band gap of these dots up to ∼4.5 eV is observed in the optical absorbance spectra. The observed blue shift can be understood using the effective mass approximation in weak and strong confinement regimes.  相似文献   

20.
The explanation of a discrepancy in the(n, e)-scattering amplitude values obtained by the Garching and Dubna groups from the data on the scattering length and total cross sections for Bi was suggested. It is also shown that the methods of derivation of the neutron polarizability coefficient used by these groups have incorrectnesses leading to additional uncertainties of neutron polarizability evaluations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号