首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bulk InxSe1−x (with x=5-25 at%) glasses were prepared using the melt-quench technique. Short range order(SRO) was examined by the X-ray diffraction using Cu(kα) radiation in the wave vector interval 0.28≤k≤6.5 A0−1.The SRO parameters have been obtained from the radial distribution function. The inter-atomic distance obtained from the first and second peak are r1=0.263 and r2=0.460 nm, which is equivalent In-Se and Se-Se bond length. The fundamental structural unit for the studied glasses is In2Se3 pyramid. Using the differential scanning calorimetry (DSC), the crystallization mechanism of InxSe1−x chalcogenide glass has been studied. The glass transition activation energy (Eg) is 289±0.3 kj/mol.There is a correlation amongst the glass forming ability, bond strength and the number of lone pair electrons. The utility of the Gibbs-Di Marzio relation was achieved by estimating Tg theoretically.  相似文献   

2.
Optical properties of ternary chalcognide amorphous Ge10AsxSe(90−x) (with 10?x?25 at%) thin films prepared by thermal evaporation have been measured in visible and near-infrared spectral region. The straightforward analysis proposed by Swanepoel has been successfully employed, and it has allowed us to determine the average thickness , and the refractive index, n, of the films, with high accuracy. The refractive index, n and the average thickness has been determined from the upper and lower envelopes of the transmission spectra measured at normal incidence, in the spectral range 400-2500 nm. The absorption coefficient α, and therefore extinction coefficient k, have been determined from the transmission spectra in the strong-absorption region. The dispersion of the refractive index is discussed in terms of the single oscillator Wemple-DiDomenico model, and the optical absorption edge is described using the ‘nondirect transition’ model proposed by Tauc. Likewise, the optical energy gap is derived from Tauc's extrapolation. The relationship between the optical gap and chemical composition in Ge10AsxSe(90−x) amorphous system is discussed in terms of the average heat of atomization Hs and average coordination number Nc. Finally, the chemical bond approach has been also applied successfully to interpret the decrease of the glass optical gap with increasing As content.  相似文献   

3.
A series of CdxZn1−xS thin films have been deposited on glass substrates using spray pyrolysis technique. The crystallinity and microstructure of CdxZn1−xS thin films have been investigated by X-ray diffraction (XRD). Based on the results of Hall measurements, the films obtained were an n-type semiconductor. The X-ray data analysis of CdxZn1−xS thin films showed that the grain size of the CdxZn1−xS increased with increase in Cd composition. It is observed that the band gap increases as the Cd composition decreases. The results also showed a blue shift of absorption edge of optical transmission spectra is increases as Zn ratio increases. The effects of Cd composition on the structural and optical properties of CdxZn1−xS thin films were related to their grain size, stress and carrier concentration.  相似文献   

4.
Structural, electrical and optical properties of Al doped ZnO (Al:ZnO) thin film of various thicknesses, grown by radio-frequency magnetron sputtering system were studied in relation to the application as a window layer in Cu(In1−xGax)Se2 (CIGS) thin film solar cell. It was found that the electrical and structural properties of Al:ZnO film improved with increasing its thickness, however, the optical properties degraded. The short circuit current density, Jsc of the fabricated CIGS based solar cells was significantly influenced by the variation of the Al:ZnO window layer thickness. Best efficiency was obtained when CIGS solar cell was fabricated with electrically and optically optimized Al:ZnO window layer.  相似文献   

5.
Compositional dependencies of the optical and physical properties of as-deposited amorphous GexSe90?xIn5 films (with 5≤x≤30 at%), prepared by thermal evaporation have been studied. The optical energy gap Egopt is derived from Tauc's extrapolation in the strong absorption region in terms of transmission and reflection spectra. The relationship between the optical gap and chemical composition of the GexSe90?xIn5 (with 5≤x≤30 at%) amorphous system is discussed in terms of the chemical bond approach. The refractive index, n and film thickness, d have been determined by an envelope method using transmission spectra. It is observed that the refractive index, n of GexSe90?xIn5 thin films increases with increasing x, over the entire spectral range, which is related to both the increased density and average coordination number.  相似文献   

6.
First-principles density-functional theory of Full-Potential Linear Augmented Plane Wave (FP-LAPW) within local density approximation (LDA) of the optical properties of ByAlxIn1−xyN systems (with x = 0.187 and y = 0.062, 0.125 and 0.187) has been performed. Substitutional atoms of Boron induced in small amounts into the (AlxIn1−x)-cationic sublattice of AlInN affects the energy gap of BAlInN. The higher band gap of Al0.375In0.625N alloy can form a useful quantum well (QW) laser structure. A best choice of B-content, ByAlxIn1−xyN could be an alternative to AlxIn1−xN. The results of accurate calculations of the band structures and optical properties show the better performance characteristics belong to the structure containing B-content (y) of 12.5%. The NaCl metallic ByAl0.1875In0.8125−yN has a direct character for y = 12.5%. The imaginary part of dielectric function, reflectivity, refractive index, absorption coefficient and optical conductivity are investigated well and provide reasonable results for optoelectronic devices applications.  相似文献   

7.
The influence of the substitution of manganese by boron on the crystal structure and magnetic properties of Ni2Mn1−xBxGa Heusler alloys with 0?x?0.5 has been investigated using X-ray diffraction, thermal expansion, resistivity, and magnetization measurements. The samples with concentrations x<0.25 were found to be of single phase and belonged to the cubic L21 crystal structure at room temperature. Crystal cell parameters of the alloys decreased from 5.830 to 5.825 Å with increasing boron concentration (x) from 0 to 0.25. The alloys were ferromagnetically ordered at 5 K and the saturation magnetization decreased with increasing boron concentration. The ferromagnetic ordering and structural transition temperatures for 0?x?0.3 have been observed and the phase (xT) diagram of the Ni2Mn1−xBxGa system was constructed. The phase (xT) diagram indicates that the ground state of Ni2Mn1−xBxGa alloys belongs to ferromagnetic martensitic, premartensitic, and austenitic phases in x?0.12, 0.12<x?0.18, and 0.18<x?0.3, respectively. The relative influence of cell parameters and electron concentrations on the phase diagram is discussed.  相似文献   

8.
Sn1−xMnxO2 (x=0.01-0.05) thin films were synthesized on quartz substrate using an inexpensive ultrasonic spray pyrolysis technique. The influence of doping concentration and substrate temperature on structural and magnetic properties of Sn1−xMnxO2 thin films was systematically investigated. X-ray diffraction (XRD) studies of these films reflect that the Mn3+ ions have substituted Sn4+ ions without changing the tetragonal rutile structure of pure SnO2. A linear increase in c-axis lattice constant has been observed with corresponding increase in Mn concentration. No impurity phase was detected in XRD patterns even after doping 5 at% of Mn. A systematic change in magnetic behavior from ferromagnetic to paramagnetic was observed with increase in substrate temperature from 500 to 700 °C for Sn1−xMnxO2 (x=0.01) films. Magnetic studies reveal room-temperature ferromagnetism (RTFM) with 3.61×10−4 emu saturation magnetization and 92 Oe coercivity in case of Sn1−xMnxO2 (x=0.01) films deposited at 500 °C. However, paramagnetic behavior was observed for the films deposited at a higher substrate temperature of 700 °C. The presence of room-temperature ferromagnetism in these films was observed to have an intrinsic origin and could be obtained by controlling the substrate temperature and Mn doping concentration.  相似文献   

9.
Herein is a report of a study on a Cd1−xZnxS thin film grown on an ITO substrate using a chemical bath deposition technique. The as-deposited films were annealed in air at 400 °C for 30 min. The composition, surface morphology and structural properties of the as-deposited and annealed Cd1−xZnxS thin films were studied using EDX, SEM and X-ray diffraction techniques. The annealed films have been observed to possess a crystalline nature with a hexagonal structure. The optical absorption spectra were recorded within the range of 350-800 nm. The band gap of the as-deposited thin films varied from 2.46 to 2.62 eV, whereas in the annealed film these varied from 2.42 to 2.59 eV. The decreased band gap of the films after annealing was due to the improved crystalline nature of the material.  相似文献   

10.
Bi5GexSe95−x (30, 35, 40 and 45 at.%) thin films of thickness 200 nm were prepared on glass substrates by the thermal evaporation technique. The influence of composition and annealing temperature, on the structural and electrical properties of Bi5GexSe95−x films was investigated systematically using X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX). The XRD patterns showed that the as-prepared films were amorphous in nature with few tiny crystalline peaks of relatively low intensity for 30 and 45 at.% and the Bi5Ge40Se55 annealed film was polycrystalline. The chemical composition of the Bi5Ge30Se65 film has been checked using energy dispersive X-ray spectroscopy (EDX). The electrical conductivity was measured in the temperature range 300-430 K for the studied compositions. The effect of composition on the activation energy (ΔE) and the density of localized states at the Fermi level N(EF) were studied, moreover the electrical conductivity was found to increase with increasing the annealing temperature and the activation energy was found to decrease with increasing the annealing temperature. The results were discussed on the basis of amorphous-crystalline transformations.  相似文献   

11.
Polycrystalline PbSe1−xTex ingots were prepared by solid-state microwave synthesis. Thin films of PbSe1−xTex were then deposited onto clean glass substrates using vacuum evaporation technique. Their nanostructure morphologies and stoichiometric ratio were examined using scanning electron microscopy (SEM) and energy dispersive X-ray spectra (EDX). X-ray diffraction (XRD) patterns indicated that the lattice constants of PbSe1−xTex powders and thin films increased with the increasing amount of Te. From the electrical property measurements, the thin films were characterized by n-type behavior.  相似文献   

12.
E.R. Shaaban 《哲学杂志》2013,93(5):781-794
The optical transmittance spectrum is influenced by inhomogeneities in germanium arsenoselenide thin films. The non-uniformity of thickness, found under the present deposition conditions, gives rise to a clear shrinking of the interference fringes of the transmittance spectrum at normal incidence. Inaccuracies and even serious errors occur if the refractive index and film thickness are calculated from such a shrunken transmittance spectrum, under the unrealistic assumption that the film is uniform. The analytical expressions proposed by Swanepoel [J. Phys. E. Sci. Instrum. 17 (1984) 896] enabled derivation of the refractive index and film thickness of a wedge-shaped thin film from its shrunk transmittance spectrum. This method was applied in this study making it possible to derive the refractive index and average thickness to an accuracy better than 1%. Dispersion of the refractive index is discussed in terms of the single-oscillator Wemple–DiDomenico model [Phys. Rev. B 3 (1971) 1338]. The absorption coefficient and, thus the extinction coefficient, can be calculated from transmittance and reflectance spectra in the strong absorption region. The optical energy gap is derived from Tauc's extrapolation [Amorphous and Liquid Semiconductor (Plenum Press, New York, 1974)]. The relationship between the optical gap and chemical composition in the Ge x As30– x Se70 (with 0 ≤ x ≤ 30) amorphous system is discussed in terms of the chemical bond approach and cohesive energy.  相似文献   

13.
Differential scanning calorimetry (DSC) technique was used to study the kinetics of amorphous to crystalline transformation for GaxSe100−x glass system (x=0, 2.5 and 5 at%). The kinetic parameters of GaxSe100−x glass system under non-isothermal conditions are analyzed by the model-free and model-fitting models at different constant heating rates (5-50 K/min). A strong heating rate dependence of the effective activation energy of crystallization was observed. The analysis of the present data shows that the effective activation energy of crystallization is not constant but varies with the degree of crystallization and with temperature as well. The crystallization mechanisms examined using the local Avrami exponents indicate that one mechanism (volume nucleation with one-dimensional growth) is responsible for the crystallization process for heating rates 5-50 K/min for Se glass and two mechanisms (volume nucleation with two- and one-dimensional growth) are working simultaneously during the amorphous-crystalline transformation of the Ga2.5Se97.5 and Ga5Se95 glasses (5-50 K/min). The reaction model that may describe crystallization process of all the compositions of GaxSe100−x glass system is Avrami-Erofeev model (g(α)=[−ln(1−α)]1/n) with n=2 for Se glass. While for Ga2.5Se97.5 and Ga5Se95 glasses, the values of n are equal to 3 and 2 for the heating rates 5-20 and 35-50 K/min, respectively. A good agreement between the experimental and the reconstructed (α-T) curves has been achieved. The transformation from amorphous to crystalline phase in GaxSe100−x glass system demonstrates complex multi-step involving several processes.  相似文献   

14.
Chalcogenide glasses are interesting materials due to their infrared transmitting properties and photo induced effects exhibited by them. Thin films with thickness of 3000 Å of the glasses Se75S25−xCdx with x=6, 8 and 10 at% prepared by melt quench technique were evaporated by thermal evaporation onto glass substrates under a vacuum of 10−6 Torr. The optical constants (absorption coefficient, refractive index and extinction coefficient) of as-prepared and annealed films have been studied as a function of photon energy in the wave length region 400-1000 nm. Analysis of the optical absorption data shows that the rule of non-direct transitions predominates. It has been found that the absorption coefficient and optical band gap increase with increasing annealing temperatures. The refractive index (n) and the extinction coefficient (k) were observed to decrease with increasing annealing temperature.  相似文献   

15.
Thin films of amorphous Se100−xSbx (x=5,10 and 20 at%) system are deposited on a silicon substrate at room temperature (300 K) by thermal evaporation technique. The optical constant such as refractive index (n) has been determined by a method based on the envelope curves of the optical transmission spectrum at normal incidence by a Swanpoel method. The oscillator energy (Eo), dispersion energy (Ed) and other parameters have been determined by the Wemple–DiDomenico method. The absorption coefficient (α) has been determined from the reflectivity and transmitivity spectrum in the range 300–2500 nm. The optical-absorption data indicate that the absorption mechanism is a non-direct transition. We found that the optical band gap, Egopt, decreases from 1.66±0.01 to 1.35±0.01 eV with increase Sb content.  相似文献   

16.
Thin films of Se 100−xInx (x=10, 20 and 30 at%) have been prepared by the flash evaporation technique. The effect of the indium content on optical band gap of the Se100−x Inx films has been investigated by the optical characterization. The optical band gap values of the Se100−x Inx thin films were determined and are found to decrease with increasing indium content. This indium content changes the width of localized states in the optical band gaps of the thin films. It was found that the optical band gap, Eg, of the Se100−x Inx films changes from 1.78 to 1.37 eV with increasing indium content from 10 to 30 at%, while the width of localized states in optical band gap changes from 375 to 342 meV. The temperature dependence of the dark electrical conductivity were studied in the temperature range 303-433 K and revealed two activation energies providing two electrical conduction mechanisms. The activation energy of the Se100−x Inx films in the high temperature region changes from 0.49 to 0.32 eV with increasing indium content from 10 to 30 at%, while the hopping activation energy in the lower temperature region changes from 0.17 to 0.22 meV. The change in the electrical conductivity with time during the amorphous-to-crystalline transformation is recorded for amorphous Se100−xInx films at two points of isothermal temperatures 370 and 400 K. The formal crystallization theory of Avrami has been used to calculate the kinetic parameters of crystallization.  相似文献   

17.
Thin films of samples of the glassy SxSe100−x system with 0 ≤ x ≤ 7.28 have been prepared by thermal evaporation technique at room temperature (300 K). X-ray investigations show that the structure of pure selenium (Se) does change seriously by the addition of small amount of sulphur S ≤7.28%. The lattice parameters were determined as a function of sulphur content. Results of differential thermal analysis (DTA) of the glassy compositions of the system SxSe100−x were discussed. The characteristic temperatures (Tg, Tc and Tm) were evaluated. Dark electrical resistivities, ρ, of SxSe100−x thin films with different thicknesses from 100 to 500 nm, were measured in the temperature range from 300 to 423 K. Two distinct linear parts with different activation energies were observed. The variation of electrical resistivity of examined compositions has been discussed as a function of the film thickness, temperature and the sulphur content. The application of Mott model for the phonon assisted hopping of small polarons gave the same two activation energies obtained from the resistivity temperature calculations.  相似文献   

18.
Nominal composition of (ZnO)1−x(MnO2)x (0.005≤x≤0.2) ceramics have been prepared by the standard solid-state reaction method in three different sintering atmospheres: Ar, air, and reductive atmosphere. The effect of sintering atmosphere on the electron spin resonance (ESR), negative temperature coefficient of resistivity (NTCR), and photoluminescence (PL) properties of (ZnO)1−x(MnO2)x ceramics has been investigated in detail. The results demonstrate that the sintering atmosphere has significant effects on the ESR signals of (ZnO)1−x(MnO2)x; the NTCR of the samples sintered in air is larger than those sintering in Ar and reductive atmosphere; the deep-level PL related to oxygen vacancy increases when sintered in the reductive atmosphere.  相似文献   

19.
Trends of structural modifications and phase composition occurring in In4Se3 thin films and In4Se3-In4Te3 epitaxial heterojunctions under laser irradiations have been investigated. Dynamics of the layer structure modification, depending on laser modes, i.e. pulse duration τ = 2-4 ms, irradiation intensity I0 = 10-50 kW/cm2, number of pulses N = 5-50, was studied by electron microscopy. An increase in laser influence promotes enlargement of the layer grains and transformation of their polycrystalline structure towards higher degree of stoichiometry. As a result of laser solid restructuring heterojunctions of In4Se3-In4Te3, being photosensitive within 1.0-2.0 μm and showing fast time of response, have been obtained. Laser modification of structure enables one to optimize electrical and optical properties of functional elements on the base of thin films and layers of In4Se3, In4Te3, widely used as infrared detectors and filters.  相似文献   

20.
Using quantum mechanics GASTEP software package based on the first principle density function theory, the electronic structure and optical properties of Ga1−xAlxAs at different Al constituent are calculated. Result shows that with the increase of Al constituent, the band gap of Ga1−xAlxAs increases and varies from direct band gap to indirect band gap; the absorption band edge and the absorption peak move to high-energy side; the static reflectivity decreases. With the increasing of the incident photon energy, Ga1−xAlxAs shows metal reflective properties in certain energy range. With the increasing of Al constituent, static dielectric constant decreases and the intersection of dielectric function and the x-axis move towards high-energy side; the peak of energy loss function move to low-energy side and the peak value reduces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号