首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transparent conducting indium oxide (In2O3) thin films have been prepared on glass substrates by the simple sol-gel-spin coating technique. These films have been characterized by X-ray diffraction, resistivity and Hall effect measurements, optical transmission, scanning electron microscopy and atomic force microscopy for their structural, electrical, optical and morphological properties. The influence of spin parameters, number of coating, process temperature on the quality of In2O3 films are studied. In the operating range of deposition, 400-475 °C, all the films showed predominant (2 2 2) orientation. Films deposited at optimum process conditions exhibited a resistivity of 2×10−2 Ω cm along with the average transmittance of about 80% in the visible spectral range (400-700 nm).  相似文献   

2.
Epitaxial In2O3 films have been deposited on Y-stabilized ZrO2 (YSZ) (1 0 0) substrates by metalorganic chemical vapor deposition (MOCVD). The films were deposited at different substrate temperatures (450-750 °C). The film deposited at 650 °C has the best crystalline quality, and observation of the interface area shows a clear cube-on-cube epitaxial relationship of In2O3(1 0 0)||YSZ(1 0 0) with In2O3[0 0 1]||YSZ[0 0 1]. The Hall mobility of the single-crystalline In2O3 film deposited at 650 °C is as high as 66.5 cm2 V−1 s−1 with carrier concentration of 1.5 × 1019 cm−3 and resistivity of 6.3 × 10−3 Ω cm. The absolute average transmittance of the obtained films in the visible range exceeds 95%.  相似文献   

3.
In this work, we report the formation of CuInS2 thin films on glass substrates by heating chemically deposited multilayers of copper sulfide (CuS) and indium sulfide (In2S3) at 300 and 350 °C in nitrogen atmosphere at 10 Torr. CIS thin films were prepared by varying the CuS layer thickness in the multilayers with indium sulfide. The XRD analysis showed that the crystallographic structure of the CuInS2 (JCPDS 27-0159) is present on the deposited films. From the optical analysis it was estimated the band gap value for the CIS film (1.49 eV). The electrical conductivity varies from 3 × 10−8 to 3 Ω−1 cm−1 depending on the thickness of the CuS film. CIS films showed p-type conductivity.  相似文献   

4.
Bi(Fe0.95Co0.05)O3 films were prepared on conductive indium tin oxide (ITO)/glass substrates by chemical solution deposition. Well saturated polarization hysteresis loop has been observed with a remnant polarization value of about 22 μC/cm2 at room temperature. Weak ferromagnetism with saturation magnetization of about 3 emu/cm3 was observed at room temperature. The clear observation of both room temperature ferroelectric and ferromagnetic properties suggests the potential multiferroic applications of Bi(Fe0.95Co0.05)O3.  相似文献   

5.
By ablating titanium containing In2O3 target with a KrF excimer laser, highly conducting and transparent films on quartz were obtained to investigate the effects of growth temperature and oxygen pressure on the structural, optical and electrical properties of these films. We find that the transparency of the films depends more on the growth temperature and less on the oxygen pressure. Electrical properties, however, are found to be sensitive to both the growth temperature and oxygen pressure. We report in this paper that a growth temperature of 500 °C and an oxygen pressure of 7.5 × 10−7 bar lead to titanium-doped indium oxide films which have high mobility (up to 199 cm2 V−1 s−1), low resistivity (9.8 × 10−5 Ω cm), and relatively high transmittance (∼88%).  相似文献   

6.
We investigated the effects of indium doping on the superconducting properties of YBCO sintered samples and thin films. In2O3-doped YBCO and YBa2Cu3−xInxOy sintered samples showed a gradual decrease in the critical temperature (Tc) with increasing indium content; however, a Tc value above 80 K was maintained even up to 30 vol.% addition and x = 0.4, respectively. Ba3Cu3In4O12 was detected by X-ray diffractometry and energy-dispersive X-ray spectroscopy as a reaction product for both sintered samples. The normalized Jc under a magnetic field of 0.1 T showed a maximum at = 0.3. Indium-doped YBCO films prepared by pulsed laser deposition showed a similar dependence of Tc on indium content as the sintered samples.  相似文献   

7.
The indium oxynitride (InON) films were achieved by reactive RF magnetron sputtering indium target which has the purity of 99.999% with a novel reactive gas-timing technique. The structural, optical and electrical properties in a series of polycrystalline InON films affected by gas-timing of reactive N2 and O2 gases introduced to the chamber were observed. The X-ray photoelectron spectroscopy revealed that the oxygen content in thin films that compounded to indium and nitrogen, which increased from 10% in indium nitride (InN) to 66% in indium oxide (In2O3) films. The X-ray diffraction peaks show that the phase of deposited films changes from InN to InON and to In2O3 with an increasing oxygen timing. The hexagonal structure of InN films with predominant (0 0 2) and (0 0 4) orientation was observed when pure nitrogen is only used as sputtering gas, while InON and In2O3 seem to demonstrate body-center cubic polycrystalline structures depending on gas-timing. The surface morphologies investigated from atomic force microscope of deposited films with varying gas-timing of O2:N2 show indifferent. The numerical algorithm method was used to define the optical bandgap of films from transmittance results. The increasing oxygen gas-timing affects extremely to the change of crystallinity phase from InN to InON and to In2O3, the increase of optical bandgap from 1.4 to 3.4 eV and the rise of sheet resistance from 15 Ω/□ to insulator.  相似文献   

8.
CuInSe2/In2O3 structures were formed by depositing CuInSe2 films by stepwise flash evaporation onto In2O3 films, which were grown by DC reactive sputtering of In target in presence of (Ar+O2) gas mixture. Phase purity of the CuInSe2 and In2O3 films was confirmed by Transmission Electron Microscopy (TEM) studies. X-ray diffraction (XRD) results on CuInSe2/In2O3/glass structures showed sharp peaks corresponding to (112) plane of CuInSe2 and (222) plane of In2O3. Rutherford Backscattering Spectrometry (RBS) investigations were carried out on CuInSe2/In2O3/Si structures in order to characterize the interface between In2O3 and CuInSe2. The results show that the CuInSe2 films were near stoichoimetric and In2O3 films had oxygen deficient composition. CuInSe2/In2O3 interface was found to include a ∼20 nm thick region consisting of copper, indium and oxygen. Also, the In2O3/Si interface showed the formation of ∼20 nm thick region consisting of silicon, indium and oxygen. The results are explained on the basis of diffusion/reaction taking place at the respective interfaces.  相似文献   

9.
Sn-doped Ga1.4In0.6O3 films have been prepared on α-Al2O3 (0 0 0 1) substrates by the metalorganic chemical vapor deposition (MOCVD) method. The Sn-doping was varied from 0% to 7% (atomic ratio). Polycrystalline films with resistivity of 4.9 × 10−3Ω cm, carrier concentration of 5.9 × 1019 cm−3 and Hall mobility of 21.4 cm2 v−1 s−1 was obtained at 5 at.% of Sn concentration. The average transmittance for the Sn-doped Ga1.4In0.6O3 films in the visible range was over 90%. The bandgap of the films varies from 3.85 to 4.21 eV.  相似文献   

10.
Transparent indium-doped cadmium oxide (In-CdO) thin films were deposited on quartz glass substrates by pulse laser deposition (PLD) from ablating Cd-In metallic target at a fixed pressure 10 Pa and a fixed substrate temperature 300 °C. The influences of indium concentrations in target on the microstructure, optical and electrical performances were studied. When the indium concentration reaches to 3.9 wt%, the as-deposited In-CdO film shows high optical transmission in visible light region, obviously enhanced direct band gap energy (2.97 eV), higher carrier concentration and lower electric resistivity compared with the undoped CdO film, while a further increase of indium concentration to 5.6 wt% induces the formation of In2O3, which reverse the variation of these parameters and performance.  相似文献   

11.
Epitaxial Ti0.97Co0.03O2:Sb0.01(TCO:Sb) films were deposited on R-Al2O3 (1 1 0 2) substrates at 500 °C in various deposition pressures by pulsed laser deposition. The solubility of cobalt within the films increases with decreasing deposition pressure at a deposition temperature of 500 °C. The TCO:Sb films deposited at 5×10−6 Torr exhibit a p-type anomalous Hall effect having a hole concentration of 6.1×1022/cm3 at 300 K. On the other hand, films deposited at 4×10−4 Torr exhibits an n-type anomalous Hall effect having an electron concentration of about 1.1×1021/cm3. p- or n-type DMS characteristics depends on the change of the structure of TCO:Sb films and the solubility of Co is possible by controlling the deposition pressure.  相似文献   

12.
A chemical spray pyrolysis technique for deposition of p-type Mg-doped CuCrO2 transparent oxide semiconductor thin films using metaloorganic precursors is described. As-deposited films contain mixed spinel CuCr2O4 and delafossite CuCrO2 structural phases. Reduction in spinel CuCr2O4 fraction and formation of highly crystalline films with single phase delafossite CuCrO2 structure is realized by annealing at temperatures ?700 °C in argon. A mechanism of synthesis of CuCrO2 films involving precursor decomposition, oxidation and reaction between constituent oxides in the spray deposition process is presented. Post-annealed CuCr0.93Mg0.07O2 thin films show high (?80%) visible transmittance and sharp absorption at band gap energy with direct and indirect optical band gaps 3.11 and 2.58 eV, respectively. Lower (∼450 °C) substrate temperature formed films are amorphous and yield lower direct (2.96 eV) and indirect (2.23 eV) band gaps after crystallization. Electrical conductivity of CuCr0.93 Mg0.07O2 thin films ranged 0.6-1 S cm−1 and hole concentration ∼2×1019 cm−3 determined from Seebeck analysis. Temperature dependence of conductivity exhibit activation energies ∼0.11 eV in 300-470 K and ∼0.23 eV in ?470 K region ascribed to activated conduction and grain boundary trap assisted conduction, respectively. Heterojunction diodes of the structure Au/n-(ZnO)/p-(CuCr0.93Mg0.07O2)/SnO2 (TCO) were fabricated which show potential for transparent wide band gap junction device.  相似文献   

13.
Ga2(1−x)In2xO3 thin films with different indium content x [In/(Ga + In) atomic ratio] were prepared on α-Al2O3 (0 0 0 1) substrates by the metal organic chemical vapor deposition (MOCVD). The structural and optical properties of the Ga2(1−x)In2xO3 films were investigated in detail. Microstructure analysis revealed that the film deposited with composition x = 0.2 was polycrystalline structure and the sample prepared with x up to 0.8 exhibited single crystalline structure of In2O3. The optical band gap of the films varied with increasing Ga content from 3.72 to 4.58 eV. The average transmittance for the films in the visible range was over 90%.  相似文献   

14.
In2S3 thin films were grown on glass substrates by means of the vacuum thermal evaporation technique and subsequently thermally annealed in nitrogen and free air atmosphere from 250 to 350 °C for different durations. Experimental parameters have been adjusted in order to optimize the annealing conditions, and to obtain high band gap energy at low deposition temperature, as required for photovoltaic applications. In order to improve our understanding of the influence of the deposition and annealing parameters on device performance, we have investigated our indium sulfide material by X-ray diffraction, energy dispersive X-ray analysis (EDAX), atomic force microscopy (AFM) and spectrophotometry. The optical and structural properties of the films were studied as a function of the annealing temperature and durations. X-ray diffraction analysis shows the initial amorphous nature of deposited In-S thin films and the phase transition into crystalline In2S3 upon thermal annealing. Films show a good homogeneity and optical direct band gap energy about 2.2 eV. An annealing temperature of 350 °C during 60 min in air atmosphere were the optimal conditions.  相似文献   

15.
Pentanary Cu(In,Ga)(Se,S)2 (CIGSS) thin films were deposited on soda-lime glass substrate by co-sputtering quaternary alloy, and In2S3 targets. In this study, we investigated the influence of post-annealing temperature on structural, compositional, electrical, and optical properties of CIGSS films. Our experimental results show that the CIGS quaternary target had chalcopyrite characteristics. All CIGSS films annealed above 733 K exhibited a polycrystalline tetragonal chalcopyrite structure, with (1 1 2) preferred orientation. The carrier concentration and resistivity of the resultant CIGSS layer annealed above 763 K was 4.86×1016 cm−3 and 32 Ω cm, respectively, and the optical band-gap of the CIGSS absorber layer was 1.18 eV. Raman spectral analysis demonstrated the existence of many different phases, including CuInSe2, CuGaSe2, and CuInS2. This may be because the vibration frequencies of In-Se, In-S bonds are similar to the Ga-Se and Ga-S bonds, causing their absorption bands overlap.  相似文献   

16.
CdIn2O4 thin films were prepared by direct-current (DC) reactive magnetron sputtering. The structure, surface morphology and the chemical composition of the thin films were analyzed by X-ray diffraction (XRD), atomic force microscope (AFM) and X-ray photoelectron spectroscopy (XPS), respectively. The electrical properties of the films prepared in different oxygen concentration and annealing treatment were determined, and the effects of the preparing conditions on the structure and electrical properties were also explored. It indicates that the CdIn2O4 thin films with uniform and dense surface morphology contain mainly CdIn2O4, In2O3 phases, and CdO phase is also observed. The XPS analysis confirms the films are in oxygen-deficient state. The electrical properties of these films significantly depend on the preparing conditions, the resistivity of the films with the oxygen concentration of 4.29% is 2.95 × 10−4 Ω cm and the Hall mobility is as high as 60.32 cm2/V s. Annealing treatment can improve the electrical performance of the films.  相似文献   

17.
Unintentionally doped and zinc-doped indium nitride (U-InN and InN:Zn) films were deposited on (0 0 0 1) sapphire substrates by radio-frequency reactive magnetron sputtering, and all samples were then treated by annealing to form In2O3 films. U-InN and InN:Zn films have similar photon absorption characteristics. The as-deposited U-InN and InN:Zn film show the absorption edge, ∼1.8-1.9 eV. After the annealing process at 500 °C for 20 min, the absorption coefficient at the visible range apparently decreases, and the absorption edge is about 3.5 eV. Two emission peaks at 3.342 eV (371 nm) and 3.238 eV (383 nm) in the 20 K photoluminescence (PL) spectrum of In2O3:Zn films were identified as the free-exciton (FE) or the near band-to-band (B-B) and conduction-band-to-acceptor (C-A) recombination, respectively.  相似文献   

18.
Trends of structural modifications and phase composition occurring in In4Se3 thin films and In4Se3-In4Te3 epitaxial heterojunctions under laser irradiations have been investigated. Dynamics of the layer structure modification, depending on laser modes, i.e. pulse duration τ = 2-4 ms, irradiation intensity I0 = 10-50 kW/cm2, number of pulses N = 5-50, was studied by electron microscopy. An increase in laser influence promotes enlargement of the layer grains and transformation of their polycrystalline structure towards higher degree of stoichiometry. As a result of laser solid restructuring heterojunctions of In4Se3-In4Te3, being photosensitive within 1.0-2.0 μm and showing fast time of response, have been obtained. Laser modification of structure enables one to optimize electrical and optical properties of functional elements on the base of thin films and layers of In4Se3, In4Te3, widely used as infrared detectors and filters.  相似文献   

19.
Thin Er3+, Yb3+ co-doped Y2O3 films were grown on (1 0 0) YAG substrates by pulsed laser deposition. Ceramic targets having different active ion concentration were used for ablation. The influence of the rare-earth content and oxygen pressure applied during the deposition on the structural, morphological and optical properties of the films were investigated. The films deposited at the lower pressure, 1 Pa, and at 1/10 Er to Yb doping ratio are highly textured along the (1 1 1) direction of the Y2O3 cubic phase. In addition to the crystalline structure, these films possess smoother surface compared to those prepared at the higher pressure, 10 Pa. All other films are polycrystalline, consisting of cubic and monoclinic phases of Y2O3. The rougher surface of the films produced at the higher-pressure leads to higher scattering losses and different behavior of the reflectivity spectra. Optical anisotropy in the films of less than 0.004 was measured regardless of the monoclinic structure obtained. Waveguide losses of about 1 dB/cm at 633 nm were obtained for the films produced at the lower oxygen pressure.  相似文献   

20.
Chemical bath deposition of CdO thin films using three different complexing agents, namely ammonia, ethanolamine, and methylamine is investigated. CdSO4 is used as Cd precursor, while H2O2 is used as an oxidation agent. As-grown films are mainly cubic CdO2, with some Cd(OH)2 as well as CdO phases being detected. Annealing at 400 °C in air for 1 h transforms films into cubic CdO. The calculated optical band gap of as-grown films is in the range of 3.37-4.64 eV. Annealed films have a band gap of about 2.53 eV. Rutherford backscattering spectroscopy of as-grown films reveals cadmium to oxygen ratio of 1.00:1.74 ± 0.01 while much better stoichiometry is obtained after annealing, in accordance with the X-ray diffraction results. A carrier density as high as 1.89 × 1020 cm−3 and a resistivity as low as 1.04 × 10−2 Ω-cm are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号