首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The results of electrical resistance and angle dispersive X-ray diffraction measurements at high pressures and ambient temperature on the chalcogenide spinel, CuIr2S4 are reported. The resistance increases gradually and reaches around 12 GPa a value that is approximately forty times the initial value. Above 15 GPa, the resistance decreases up to 30 GPa and on further pressure increase tends to saturate at a value slightly above the ambient pressure value. Thus, the material exhibits a reentrant high conducting phase under pressure. The behaviour of the electrical resistance exhibits a close correlation with the structural evolution with pressure.  相似文献   

2.
The Raman spectroscopic studies of two rare earth trihydrides: Y H3, HoH3, have been performed in the pressure range from ambient up to 16 GPa and 25 GPa respectively. For the first time samples of REH3 in the form of powder have been studied by Raman spectroscopy using the Diamond Anvil Cell (DAC) technique. A rapid decrease of Raman activity has been observed for the hydrides under pressure values in the vicinity of structural phase transition. Metallization as a possible reason for the observed dramatic change of the REH3 Raman activity has been discussed.  相似文献   

3.
At 141 °C the solid acid CsHSO4 is known to undergo transition to a superprotonic phase that is characterized by dramatic (several-order-of-magnitude) increases in hydrogen ion conductivity. Proton NMR spin-spin relaxation time T2 measurements reported here for CsHSO4 also reveal substantial increases (factors of 20-30) in the vicinity of the transition temperature. In the temperature range just below the transition (70-136 °C), T2 increases by a factor of order 10 relative to the rigid-lattice regime, suggesting motional narrowing of the NMR resonance line. In the regime of motional narrowing, the activation energy barrier to diffusion is 0.40 eV, as determined from the present T2 results. NMR spin-lattice relaxation T1 measurements also show behavior consistent with transition to a regime of rapid hydrogen motion. In particular, proton T1's decrease with temperature (from 80 to 120 °C), and then drop sharply near the transition temperature. Above the transition temperature, T1 exhibits a minimum in which the correlation time is found to be ∼2 ns.  相似文献   

4.
High pressure Raman and angle dispersive X-ray diffraction (ADXRD) measurements on the metallic hexaboride LaB6 have been carried out upto the pressures of about 20 GPa. The subtle phase transition around 10 GPa indicated in Raman measurements is confirmed by ADXRD experiments to be a structural change from cubic to orthorhombic phase. Ab-initio electronic band structure calculations using full potential linear augmented plane wave method carried out as a function of pressure show that this transition is driven by the interception of Fermi level by electronic band minimum around the transition pressure.  相似文献   

5.
We report the results of electrical resistance measurements at high pressures on Cs2MoS4 and KTbP2Se6. The results of high pressure X-ray diffraction study of Cs2MoS4 are also presented. Interestingly, in the case of Cs2MoS4 the resistance vs. pressure follows the behavior of the absorption edge vs. pressure obtained from our optical measurements lending further support to a direct-indirect band crossing. In the case of KTbP2Se6,the phase transition at about 9.2 GPa is reflected in a sharp drop of the resistance. In addition we report the pressure dependence of the lattice constants as well as the equation of state of Cs2MoS4.  相似文献   

6.
60 polymers. Pure and mixed phase polymeric samples were synthesized by simultaneously subjecting microcrystalline C60 powder or pellets to various pressures () and temperatures (). The optical spectra of the orthorhombic, tetragonal, and rhombohedral C60 polymer phases are observed to be quite distinct and rich. These spectra exhibit numerous lines and an overall downshift in frequency relative to C60 is observed, consistent with a loss of double bonds from the fullerene cage. The LDMS spectra of a sample synthesized at under hydrostatic conditions and , exhibited a succession of clear peaks at mass numbers corresponding to , similar to the LDMS data on the C60 photopolymer. This is taken as further evidence for interfullerene bonds in these high-pressure polymers. The XRD pattern of this sample indicates the presence of a strong texture in the sample. Received: 14 November 1996/Accepted: 8 January 1997  相似文献   

7.
The shift of the Curie temperature of CrO2 with pressure was determined by ac-susceptibility measurements under hydrostatic pressure up to 5 GPa. These experiments show that ferromagnetism of CrO2 is suppressed at a rate , which is close to recent theoretical estimates.  相似文献   

8.
9.
Pr3+ ion crystal field (CF) excitations in PrMnO3 single crystals have been studied by infrared transmission, in the 1800–8000 cm−1 range, as a function of temperature and applied magnetic field up to 13 T. No noticeable frequency shifts which might occur below TN∼100 K, as a result of the antiferromagnetic transition, are observed in the Pr3+ CF levels. A set of CF parameters that fit the experimental levels as well as the low temperature Pr3+ magnetic moment in PrMnO3 has been determined.  相似文献   

10.
In order to investigate the pressure effect on the magnetism in the layered cobaltites, positive muon spin rotation and relaxation μ+SR experiments have been carried out up to 1.3 GPa using c-aligned polycrystalline samples of [Ca2CoO3]0.62[CoO2] and [Ca2Co4/3Cu2/3O4]0.62[CoO2]. A transverse field μ+SR experiment indicates that the transition temperature to an incommensurate spin density wave IC-SDW state is independent of hydrostatic pressure up to 1.3 GPa for the both compounds. Furthermore, there are no changes in the spontanious muon precession frequency in zero field at 5 K even under 1.3 GPa. These results strongly suggest that the IC-SDW exists not in the rocksalt-type block ([Ca2CoO3] and/or [Ca2Co4/3Cu2/3O4]) but in the CoO2 plane.  相似文献   

11.
We have investigated structural and elastic properties of PtN2 under high pressures using norm-conserving pseudopotentials within the local density approximation (LDA) in the frame of density-functional theory. Calculated results of PtN2 are in agreement with experimental and available theoretical values. The a/a0, V/V0, ductility/brittleness, elastic constants Cij, shear modulus C′, bulk modulus B, shear modulus G, Young's modulus E, Poisson's ratio σ and anisotropy factor A as a function of applied pressure are presented. Through the quasi-harmonic Debye model, we also study thermodynamic properties of PtN2. The thermal expansion versus temperature and pressure, thermodynamic parameters X (X=Debye temperature or specific heat) with varying pressure P, and heat capacity of PtN2 at various pressures and temperatures are estimated.  相似文献   

12.
We present new results on the pressure dependence of the electronic band gap of molecular C60 measured by photoluminescence spectroscopy up to 10 GPa at room temperature. In agreement with previous results, the energy gap decreases with increasing pressure up to about 6 GPa. For higher pressures, however, we observe an energy gap that is wider than that at 6 GPa.  相似文献   

13.
The pressure-volume-temperature (P-V-T) equation of state (EOS), isothermal bulk modulus, and thermal expansivity of CaF2 with cubic fluorite-type structure are investigated using the constant temperature and pressure shell model molecular dynamics (MD) method with effective pair potentials which consist of the Coulomb, dispersion, and repulsion interaction. It was shown that MD simulation is very successful in accurately reproducing the measured volumes of the CaF2 over a wide range of pressures. The simulated P-V data matched X-ray diffraction experimental results up to 9.5 GPa at 300 K. In addition, volume thermal-expansion coefficient and isothermal bulk modulus were also calculated and compared with available experimental data and the latest theoretical results at ambient condition. At extended temperature and pressure ranges, The P-V EOS under different isotherms at selected temperatures, T-V EOS under different isobars at selected pressures, thermal expansivity, and isothermal bulk modulus were predicted up to 1500 K and 10 GPa. The detailed knowledge of thermodynamic behavior and EOS at extreme conditions are of fundamental importance to the understanding of the physical properties of CaF2.  相似文献   

14.
A series of the double-doping samples La(2+x)/3Sr(1−4x)/3Mn1−xCrxO3 (0?x?0.25) with the Mn3+/Mn4+ ratio fixed at 2:1 have been fabricated. The structural, magnetic, transport properties and Raman spectroscopy have been investigated, and no apparent crystal structure change is introduced by Cr doping up to x=0.25. But the Curie temperature TC and metal-insulator transition temperature TMI are strongly affected by Cr substitution. The room temperature Raman spectra start exhibiting some new features following the increasing concentration of Cr substitutions. Moreover, it is worth noting that the frequency of the A1g phonon mode can also be well correlated with the A-site mismatch effect (σ2), which is influenced mainly by the variety of the Sr content.  相似文献   

15.
Hydrostatic pressure effects on the temperature- and magnetic field dependencies of the in-plane and out-of-plane magnetization of the bi-layered perovskite Sr3Ru2O7 have been studied by SQUID magnetometer measurements under a hydrostatic helium-gas pressure. The anomalously enhanced low-temperature value of the paramagnetic susceptibility has been found to systematically decrease with increasing pressure. The effect is accompanied by an increase of the temperature Tmax of a pronounced peak of susceptibility. Thus, magnetization measurements under hydrostatic pressure reveal that the lattice contraction in the structure of Sr3Ru2O7 promotes antiferromagnetism and not ferromagnetism. The effects can be explained by the enhancement of the inter-bi-layer antiferromagnetic spin coupling, driven by the shortening of the superexchange path, and suppression, due to the band-broadening effect, of competing itinerant ferromagnetic correlations.  相似文献   

16.
We report the results of a synchrotron based X-ray diffraction study of bct-Fe2B under quasi-hydrostatic conditions from 0 to 50 GPa. Over this pressure range, no phase change or disproportionation has been observed. A weighted fit of the data to the Birch-Murnaghan equation of state yields a value of the bulk modulus, K, of 164±14 GPa and the first pressure derivative of the bulk modulus, K′, of 4.4±0.5. The compression is found to be anisotropic, with the a-axis being more incompressible than the c-axis.  相似文献   

17.
Synchrotron x-ray diffraction measurements of CdCu3Ti4O12 (CDCTO) were performed up to 55.5 GPa. There is no structural phase transformation in this pressure range. The irregular curvature shifts of the P-V curve are attributed to the grain surface effect. Analysis indicates that the grain surface of CDCTO is stiffer than the grain interior at higher pressures. We point out that the atoms on grain surfaces must be either densely packed or have a strong correlation with the gain interior in order to have a high dielectric constant, as in CaCu3Ti4O12. The derived bulk modulus of CDCTO is approximately 235±7 GPa with K=5.1±0.4.  相似文献   

18.
Polycrystalline Bi4Ti3O12 thin films were prepared on quartz substrates by pulsed laser deposition. The films were crystallized in the orthorhombic layer perovskite structure confirmed by X-ray diffraction and Raman spectroscopy. The Raman spectra are strongly dependent on temperature. A subtle phase transition in the temperature range 473-573 K exists in polycrystalline BTO thin films, which is evidenced by the disappearance of the Raman band at 116 cm−1 and appearance of a new Raman band at 151 cm−1. The two broad Raman bands centered at the 57 and 93 cm−1 at 300 K break up into clusters of several sharp Raman peaks at 77 K, due to monoclinic distortion of orthorhombic structure at low temperature in the as-prepared Bi4Ti3O12 thin films.  相似文献   

19.
Using Raman spectroscopy and X-ray diffraction we find that at high pressure amorphization of scandium molybdate occurs in two stages. Excessive broadening of molybdate internal modes arising from distortion and disordering of MoO4 tetrahedra, together with rapid weakening of diffraction from large d-spacings and disappearance of diffraction from small d-spacings suggest gross molybdate ion disorder above 4 GPa. On the other hand, complete amorphization occurs at the significantly higher pressure of 12 GPa, where diffraction disappears completely. The amorphization is also found to be irreversible.  相似文献   

20.
The structural and magnetic properties of ErMn2H4.6 have been studied by X-ray and neutron diffraction up to the pressures of 15 and 6 GPa, respectively. In the pressure range 0<P<3 GPa we observe a first-order phase transition to new high-pressure (HP) phase. The HP phase has the same hexagonal unit cell as the ambient-pressure phase but smaller lattice parameters (ΔV/V=−5%). The structural transition results in suppression of the long-range antiferromagnetic order. Our results suggest that pressure changes positions of the hydrogen atoms in the metal host. We speculate that the new arrangement of hydrogen atoms induces spin frustration and, therefore, suppresses long-range magnetic order in the HP phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号