首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L.A. Openov 《Physics letters. A》2008,372(19):3476-3483
Phonon-related decoherence effects in a double-well two-level subsystem coupled to a solid are studied theoretically by the example of deformation phonons. Expressions for the reduced density matrix at T=0 are derived beyond the Markovian approximation by means of explicit solution of the non-stationary Schrödinger equation for the interacting electron-phonon system.  相似文献   

2.
The effect of the kinematic factor on vibronic spectra of europium compounds and Eu3+-doped lanthanide compounds was examined experimentally. It was demonstrated that isotopic or quasi-isotopic substitution of the ions of the crystal lattice gives rise not only to the changes of the vibration frequencies but also to alteration of the value of electron-phonon interaction. The latter displays in changing the relative integral intensity of vibronic sidebands of electronic transitions of Eu3+ ion. Eu3+ vibronic spectra of a number of pairs of natural and isotopically or quasi-isotopically substituted compounds: nitrates, halides, formates, acetates, oxalates, β-diketonates, etc., were studied. In most cases the substitution of deuterium for hydrogen was applied. Decrease of the electron-phonon interaction with the increase of the isotopic mass depends on different structural characteristics. It was found that a factor of decreasing the relative intensity of the vibronic sideband of electronic transition of Eu3+ ion lies within the range ∼1.2 and ∼7 for pairs of compounds under investigation. The largest change of the intensity of vibronic sidebands was observed in a pair of formates Eu(HCOO)3 and Eu(DCOO)3 having the tridentate-bridging coordination of the formate anions and a three-dimensional frame structure. One should take into consideration both decreasing the vibration frequencies and diminishing the value of electron-phonon interaction at introduction of heavy isotope or quasi-isotope in the crystal lattice of lanthanide compounds to reduce the multiphonon quenching of luminescence.  相似文献   

3.
We present an exact real-space renormalization group (RSRG) scheme for the electronic Green's functions of one-dimensional tight-binding systems having both nearest-neighbor and next-nearest-neighbor hopping integrals, and determine the electronic density of states for the quasiperiodic Fibonacci chain. This RSRG method also gives the Lyapunov exponents for the eigenstates. The Lyapunov exponents and the analysis of the flow pattern of hopping integrals under renormalization provide information about the nature of the eigenstates. Next we develop a transfer matrix formalism for this generalized tight-binding system, which enables us to determine the wave function amplitudes. Interestingly, we observe that like the nearest-neighbor tight-binding Fibonacci chain, the present generalized tight-binding system also have critical eigenstates, Cantor-set energy spectrum and highly fragmented density of states. It indicates that these exotic physical properties are really the characteristics of the underlying quasiperiodic structure. Received 5 April 1999  相似文献   

4.
This note contains the exact diagonalisation of the Hamiltonian describing a two-level system coupled to a Bose gas with an Einstein spectrum (Sections II–IV). In Sections VI and VII we calculate the decay in time of different initial situations of the system.  相似文献   

5.
Excitations of the polaron types are investigated in the spin-1/2 quantum chain with XY exchange and Dzyaloshinsky-Moriya interaction, both coupled to acoustic vibrations of the substrate lattice. The study is carried out via Jordan-Wigner transformation with the help of which the spin chain is mapped onto a chain of spinless fermions. From the resulting effective fermion-lattice Hamiltonian, the discrete equations of motion are derived. These equations are solved in the continuum limit for self-trapped states near the bottom of the fermion spectrum interacting with long-wavelength acoustic lattice modes. The associate polaron solution, which has a pulse shape, is shown to propagate bound to the induced lattice kink distortion by translation along the chain at a constant velocity v. The pair can also experience an additional acceleration ϑ0 when the free fermion charge is excited above its groundstate. The polaron binding energy is strongly reduced, depending quadratically on the ratio D/J of the Dzyaloshinsky-Moriya interaction strength D to the isotropic XY exchange interaction J. It is also found that polaron parameters depend only on the XY spin-lattice coupling but not on the Dzyaloshinsky-Moriya contribution.  相似文献   

6.
A system of N two-level atoms interacting with a resonant single-mode quantum field (the Dicke model) is described using the operator method for solving the Schrödinger equation. The spectrum of states is calculated without recourse to the rotating-wave approximation and the assumption regarding smallness of the linear sizes of the system as compared to the radiation wavelength. Analytical approximate expressions are obtained for the energy spectrum. These expressions approximate the energy spectrum over the entire range of Hamiltonian parameters in the normal and collective states of the system and make it possible to calculate the thermodynamic characteristics.  相似文献   

7.
侯俊华  梁希侠 《中国物理快报》2007,24(11):3222-3224
The ground-state energy and effective mass of an acoustic polaron in one dimension are calculated by using an electron-longitudinal-acoustic-phonon interaction Hamiltonian derived here. The self-trapping of the acoustic polaron is discussed. It is found that the critical coupling constant shifts toward weaker electron-phonon interaction with the increasing cutoff wave vector and the products of the critical coupling constant by the cutoff wave vector tend to a certain value. The self-trapping of acoustic polarons in one dimension is easier to be realized than that in three- and two-dimensional systems. The self-trapping transition of acoustic polarons is expected to be observed in the one dimensional systems of alkali halides and wide-band-gap semiconductors.  相似文献   

8.
We have studied the energy spectra and the electronic states of a soliton in the weakly coupled electron-phonon systems using an extension of SSH model that includes non-nearest neighbor hopping interactions. The results show that: (1) the electron-hole symmetry of the energy band structure implied by SSH model is broken, and the energy gap 2 increases. (2) for a negative charged soliton, only two bound states have been found, one of them is the midgap state, another is a new shallow state near the bottom of the conduction band; for a neutral soliton, all three bound states exist as in the SSH model, but their localizations are strengthened; for a positive charged soliton, four bound states have been found, one of which is an additional state near the top of the conduction band.  相似文献   

9.
We theoretically investigate the spin-polarized transport properties of the T-shaped double quantum dots coupled to two ferromagnetic leads by the Anderson Hamiltonian. The Hamiltonian is solved by means of the slave-boson mean-field theory. We calculate the density of states and the liner conductance in this system with both parallel and antiparallel lead-polarization alignments, and our results show that the transport properties of this system depend on both the tunnelling strength between the two dots and the spin-polarized strength p. This system is a possible candidate for spin valve transistors in the spintronics.  相似文献   

10.
The influence of vibronic interactions on the chiroptical spectra associated with pairs of nearly degenerate electronic transitions in chiral systems is examined on a formal theoretical model. We consider the special case in which two nearly degenerate electronic states are coupled by a single non-totally symmetric vibrational mode. Formal expressions are developed for the rotatory strengths of individual vibronic transitions in this coupled system. Calculations based on these expressions are carried out for a large number of parameter sets appropriate for various energy spacings between the unperturbed electronic states, vibronic coupling strengths, oscillator (vibrational mode) frequencies, and electronic rotatory strengths. The calculated results demonstrate the profound influence of vibronic interactions on the sign patterns and intensity distributions within the rotatory strength spectrum associated with the two coupled electronic states. The implications of these results for interpretations of circular dichroism spectra are discussed.  相似文献   

11.
We present a formalism to calculate frequency dependent electron current noise for transport through two-level systems (such as coupled quantum dots or Cooper-pair boxes) in presence of dissipation. Perturbation theories in various regimes are formulated within a matrix scheme in Laplace scheme which we evaluate in detail both for weak and strong coupling to a bosonic environment.Received: 12 December 2003, Published online: 10 August 2004PACS: 72.70. + m Noise processes and phenomena - 73.23.Hk Coulomb blockade; single-electron tunneling  相似文献   

12.
The de-excitation process of FA(type I) centers in KCl:Na has been investigated by measuring the hot luminescence spectrum from optically excited FA centers with time-resolved spectroscopy. The experimental results are analyzed by using a model that describes a time evolution of the phonon wave packet during the vibronic relaxation process from the Franck-Condon state to a relaxed excited state. From the analysis of the experimental data, information on the vibronic mixing between 2p and 2s states, whose magnitude varies during the relaxation process, and the adiabatic potential energy curves of 2s and 2p states are extracted. The present results are compared with the already known ones of the FA(type II) centers.  相似文献   

13.
The recombination of electron-hole pairs injected in extended conjugated systems is modeled as a multistep interconversion relaxation in monoexcited electronic state space, mediated by electron-phonon coupling. The computed ratio of triplet-to-singlet exciton formation times r=tau(T)/tau(S) increases from 0.9 for a model dimer to 2.5 for a 32-unit chain, in good agreement with recent experiments. We rationalize the conjugation-length dependence of r in terms of spin-specific energetics and mutual vibronic coupling of the excited states.  相似文献   

14.
In this Letter, a different method was given for calculating the energies of the magnetobipolarons confined in a parabolic QD (quantum dot). We introduced single-mode squeezed states transformation, which are based on the Lee-Low-Pines and Huybrechts (LLP-H) canonical transformations. This method can provide results not only for the ground state energy but also for the excited states energies. Moreover, it can be applied to the entire range of the electron-phonon coupling strength. Comparing with the results of the LLP-H transformations, we have obtained more accurate results for the ground state energy, excited states energies and binding energy of the bipolarons. It shows that the magnetic field and the quantum dot can facilitate the formation of the bipolarons when η is smaller than some value.  相似文献   

15.
We study the dynamics of edge states of the two dimensional BHZ Hamiltonian in a ribbon geometry following a sudden quench to the quantum critical point separating the topological insulator phase from the trivial insulator phase. The effective edge state Hamiltonian is a collection of decoupled qubit-like two-level systems which get coupled to bulk states following the quench. We notice a pronounced collapse and revival of the Lochschmidt echo for low-energy edge states illustrating the oscillation of the state between the two edges. We also observe a similar collapse and revival in the spin Hall current carried by these edge states, leading to a persistence of its time-averaged value.  相似文献   

16.
The Feynman-Haken variational path integral theory is, for the first time, generalized to calculate the ground-state energy of an electron coupled simultaneously to a Coulomb potential and to a longitudinal-optical (LO) phonon field in parabolic quantum wires. It is shown that the polaronic correction to the ground-state energy is more sensitive to the electron-phonon coupling constant than the Coulomb binding parameter and monotonically stronger as the effective wire radius decreases. We apply our calculations to several semiconductor quantum wires and find that the polaronic correction can be considerably large. Received 16 November 1998  相似文献   

17.
In this paper, a classical system of ordinary differential equations is built to describe a kind of n-dimensional quantum systems. The absorption spectrum and the density of the states for the system are defined from the points of quantum view and classical view. From the Birkhoffian form of the equations, a Birkhoffian symplectic scheme is derived for solving n-dimensional equations by using the generating function method. Besides the Birkhoffian structure- preserving, the new scheme is proven to preserve the discrete local energy conservation law of the system with zero vector f . Some numerical experiments for a 3-dimensional example show that the new scheme can simulate the general Birkhoffian system better than the implicit midpoint scheme, which is well known to be symplectic scheme for Hamiltonian system.  相似文献   

18.
The coupling between conduction charges and the vibrational modes of the molecular lattice plays a defining role in the transport characteristics of organic semiconductors. Using electron tunneling spectroscopy, we obtain the electron--optical-phonon coupling spectrum in photodoped pentacene crystals at energies <30 meV. Comparison of the tunneling spectrum to infrared absorption data on the optical phonon density of states yields the energy dependence of the electron-phonon scattering matrix element. The integrated spectral weight of the electron-phonon coupling shows that superconductivity in pentacene is likely of electron-phonon origin.  相似文献   

19.
We present a comparison of electron-phonon interaction in NbB2 and MgB2, calculated using full-potential, density-functional-based methods in P6/mmm crystal structure. Our results, described in terms of (i) electronic structure, (ii) phonon density of states F(ω), (iii) Eliashberg function α2F(ω), and (iv) the solutions of the isotropic Eliashberg gap equation, clearly show significant differences in the electron-phonon interaction in NbB2 and MgB2. We find that the average electron-phonon coupling constant λ is equal to 0.59 for MgB2 and 0.43 for NbB2, leading to superconducting transition temperatures Tc at around 22 K for MgB2 and 3 K for NbB2.  相似文献   

20.
We present an ab initio technique for the calculation of vibrational modes at deep defects in semiconductors outside and inside the host-phonon bands. The dynamical matrix is calculated using density-functional theory in the local density approximation. In the results presented here all interatomic harmonic forces up to the eleventh nearest neighbour of a particular atom of the perturbed or unperturbed crystal are included. The Green's function method is used to obtain the difference of the density of phonon states between the perturbed and the perfect crystal. This technique is applied to calculate the split-off mode at the C impurity at As site in GaAs and its isotope shifts, which are in good agreement with Raman scattering experiments. It is demonstrated that the impurities generate resonances and localized modes inside the host-phonon bands. The resonances arise at specific energies of the density of phonon states of the perfect crystal which are practically independent of the chemical nature of the defect, whereas the localized modes show distinct impurity or ligand isotope shifts. Our calculations of GaAs and cubic GaN lead to the assignment of a number of low energy Raman-scattering peaks between 7.2 meV and 31.0 meV, observed at a layer of cubic GaN on a GaAs substrate, to resonances inside the phonon bands of GaAs and GaN. Received 5 March 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号