首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Deposition of HfO2 films on n-type 4H-SiC substrates by sol-gel spin-on coating technique has been performed and the physical and electrical characteristics of this film as a function of annealing temperature (550, 750, and 850 °C for 30 min) have been reported. The physical properties of the film have been characterized using a Filmetrics and X-ray diffractometer, while conduction atomic force microscope and semiconductor parameter analyzer were used for electrical characterization. Phase transformation has been revealed in the oxide as the annealing temperature changed. Refractive index, relative density, dielectric constant of the film, and oxide-semiconductor interface trap density have been extracted and related to the leakage current through the oxide. It has been recorded that, oxide annealed at 700 °C has demonstrated the lowest leakage current and the best oxide reliability. The reasons of these observations have been explained.  相似文献   

2.
La-doped HfO2 gate dielectric thin films have been deposited on Si substrates using La(acac)3 and Hf(acac)4 (acac = 2,4-pentanedionate) mixing sources by low-pressure metal-organic chemical vapor deposition (MOCVD). The structure, thermal stability, and electrical properties of La-doped HfO2 films have been investigated. Inductive coupled plasma analyses confirm that the La content ranging from 1 to 5 mol% is involved in the films. The films show smaller roughness of ∼0.5 nm and improved thermal stability up to 750 °C. The La-doped HfO2 films on Pt-coated Si and fused quartz substrates have an intrinsic dielectric constant of ∼28 at 1 MHz and a band gap of 5.6 eV, respectively. X-ray photoelectron spectroscopy analyses reveal that the interfacial layer is Hf-based silicate. The reliable value of equivalent oxide thickness (EOT) around 1.2 nm has been obtained, but with a large leakage current density of 3 A/cm2 at Vg = 1V + Vfb. MOCVD-derived La-doped HfO2 is demonstrated to be a potential high-k gate dielectric film for next generation metal oxide semiconductor field effect transistor applications.  相似文献   

3.
Organic-inorganic hybrid-polymer thin films were deposited on silicon(1 0 0) substrates at room temperature by PECVD (plasma enhanced chemical vapor deposition). Ethylcyclohexane and TEOS (tetraethoxysilane) were utilized as organic and inorganic precursors with hydrogen gas for the ethylcyclohexane bubbler and argon gas for both the TEOS bubbler and as a carrier gas. To compare the electrical and the mechanical properties of the plasma polymerized thin films, we grew the hybrid-polymer thin films under conditions of various TEOS bubbling ratios. MTS nano-indenter was used to measure the hardness and Young's modulus and showed that these values increased as the TEOS bubbling ratio increased, with the highest hardness at 0.8 GPa in this experiment. An impedance analyzer was utilized for the measurements of I-V curves and capacitance, showing the lowest dielectric constant at approximately 1.83, with a leakage current density of 10−8 A/cm2 at 1 MV/cm, respectively.  相似文献   

4.
The impact of the ZrO2/La2O3 film thickness ratio and the post deposition annealing in the temperature range between 400 °C and 600 °C on the electrical properties of ultrathin ZrO2/La2O3 high-k dielectrics grown by atomic layer deposition on (1 0 0) germanium is investigated. As-deposited stacks have a relative dielectric constant of 24 which is increased to a value of 35 after annealing at 500 °C due to the stabilization of tetragonal/cubic ZrO2 phases. This effect depends on the absolute thickness of ZrO2 within the dielectric stack and is limited due to possible interfacial reactions at the oxide/Ge interface. We show that adequate processing leads to very high-k dielectrics with EOT values below 1 nm, leakage current densities in the range of 0.01 A/cm2, and interface trap densities in the range of 2-5 × 1012 eV−1 cm−2.  相似文献   

5.
Zinc sulfide thin films were prepared on glass substrates at room temperature using a chemical bath deposition method. The obtained films were annealed at temperatures ranging from 100 to 500 °C in steps of 100 °C for 1 h. The films were characterized by X-ray diffraction (XRD), Raman spectroscopy, energy dispersive X-ray analysis (EDX), optical absorption spectra, and electrical measurements. X-ray diffraction analysis indicates that the deposited films have an amorphous structure, but after being annealed at 500 °C, they change to slightly polycrystalline. The optical constants such as the refractive index (nr), the extinction coefficient (k), and the real (ε1) and imaginary (ε2) parts of the dielectric constant are calculated depending on the annealing temperature. Aside from the ohmic characteristics of the I-V curve, a nonlinear I-V curve owing to the Schottky contact is also found, and the barrier heights (?bn) for Au/n-ZnS and In/n-ZnS heterojunctions are calculated. The conductivity type was identified by the hot-probe technique.  相似文献   

6.
The purpose of this paper is to report some experimental results with HfSiO films formed on silicon substrates by electron beam evaporation (EB-PVD) and annealed at different temperatures. The images of atomic force microscope (AFM) indicated that HfSiO film annealed at 900 °C was still amorphous, with a surface roughness of 0.173 nm. X-ray photoelectron spectroscopy (XPS) analysis revealed that the chemical composition of the film was (HfO2)3(SiO2) and Hf-Si-O bonds existed in the annealed film. Electrical measurements showed that the equivalent oxide thickness (EOT) was 4 nm, the dielectric constant was around 6, the breakdown voltage was 10 MV/cm, the fixed charge density was −1.2 × 1012 cm−2, and the leakage current was 0.4 μA/cm2 at the gate bias of 2 V for 6 nm HfSiO film. The annealing after deposition effectively reduced trapping density and the leakage current, and eliminated hysteresis in the C-V curves. Annealing also induced SiO2 growth at the interface.  相似文献   

7.
Hafnium oxide (HfO2) thin films have been made by radio-frequency (rf) magnetron-sputtering onto Si(1 0 0) substrates under varying growth temperature (Ts). HfO2 ceramic target has been employed for sputtering while varying the Ts from room temperature to 500 °C during deposition. The effect of Ts on the growth and microstructure of deposited HfO2 films has been studied using grazing incidence X-ray diffraction (GIXRD), and high-resolution scanning electron microscopy (HR-SEM) coupled with energy dispersive X-ray spectrometry (EDS). The results indicate that the effect of Ts is significant on the growth, surface and interface structure, morphology and chemical composition of the HfO2 films. Structural characterization indicates that the HfO2 films grown at Ts < 200 °C are amorphous while films grown at Ts > 200 °C are nanocrystalline. An amorphous-to-crystalline transition occurs at Ts = 200 °C. Nanocrystalline HfO2 films crystallized in a monoclinic structure with a (−1 1 1) orientation. An interface layer (IL) formation occurs due to reaction at the HfO2-Si interface for HfO2 films deposited at Ts > 200 °C. The thickness of IL increases with increasing Ts. EDS at the HfO2-Si cross-section indicate that the IL is a (Hf, Si)-O compound. The electrical characterization using capacitance-voltage measurements indicate that the dielectric constant decreases from 25 to 16 with increasing Ts. The current-voltage characteristics indicate that the leakage current increases significantly with increasing Ts due to increased ILs.  相似文献   

8.
In this article, the authors developed a high-k HoTiO3 gate dielectric deposited on Si (1 0 0) through reactive cosputtering. They found that the HoTiO3 dielectrics annealed at 800 °C exhibited excellent electrical properties such as high capacitance value, small density of interface state, almost no hysteresis voltage, and low leakage current. This phenomenon is attributed to the decrease in intrinsic defect (related to oxygen vacancy) due to a rather well-crystallized HoTiO3 structure and composition observed by X-ray diffraction, secondary ion mass spectrometry, and X-ray photoelectron spectroscopy, respectively.  相似文献   

9.
Optical properties of iridium oxide films fabricated by the spray pyrolysis technique (SPT) have been investigated. The transmission and reflection spectra of the sprayed films were measured by using a double-beam spectrophotometer in the wavelength range from 200 to 2500 nm. Influences of the preparative parameters; namely, substrate temperature (350-500 °C) and solution molarity (0.005-0.03 M), on the optical characteristics were examined. The solution molarity of the iridium chloride solution was varied so as to prepare iridium oxide thin films with thicknesses ranging from 160 to 325 nm. Some important characteristics of optical absorption, such as optical dispersion energies, the dielectric constant, the ratio of the number of charge carriers to the effective mass, the single oscillator wavelength, and the average value of the oscillator strength, were evaluated. The value of the refractive index was found to depend on the chemical composition as well as the degree of stoichiometry of IrO2. The values obtained for the high frequency dielectric constant through two procedures are in the range of 2.8-3.9 and 3.3-4.6 over the relevant ranges of the substrate temperature and solution molarity, respectively. Analysis of the energy dispersion curve of the absorption coefficient indicated a direct optical transition with the bandgap energy ranging between 2.61 and 2.51 eV when the substrate temperature increases from 350 to 500 °C.  相似文献   

10.
High-k polycrystalline Pr2O3 and amorphous LaAlO3 oxide thin films deposited on Si(0 0 1) are studied. The microstructure is investigated using X-ray diffraction and scanning electron microscopy. Optical properties are determined in the 0.75-6.5 eV photon energy range using spectroscopic ellipsometry. The polycrystalline Pr2O3 films have an optical gap of 3.86 eV and a dielectric constant of 16-26, which increases with film thickness. Similarly, very thin amorphous LaAlO3 films have the optical gap of 5.8 eV, and a dielectric constant below 14 which also increases with film thickness. The lower dielectric constant compared to crystalline material is an intrinsic characteristic of amorphous films.  相似文献   

11.
Nanocrystalline nickel-zinc ferrite thin films with the general formula Ni1−xZnxFe2O4, where x=0.0, 0.2, 0.4 and 0.6 were fabricated via a chemical route known as the citrate precursor route. These films were spin-deposited on indium-tin oxide coated glass, fused quartz and amorphous Si-wafer substrates, and annealed at various temperatures up to 650 °C. The films annealed below 400 °C were found to be X-ray amorphous, while the films annealed at and above 400 °C were polycrystalline exhibiting a single-phase spinel structure. The average grain size of the films evaluated by transmission electron microscopy, is found to be in the range 4-8.5 nm. The room temperature DC resistivity of the films is in the range 103-107 Ω m. Dielectric constant and dielectric loss were measured in the frequency range 100 Hz-1 MHz. Dielectric constant of the films is found to lie between 25 and 44, while the loss factor is if the order of 10−2. The higher values of the dielectric constant for films having higher zinc concentration are attributable to the enhanced hopping between Fe2+ and Fe3+ ions in these samples. The M-H hysteresis measurement of the nickel ferrite thin films annealed at 650 °C showed narrow hysteresis loop—a characteristic of soft ferromagnetic material.  相似文献   

12.
Iron oxide magnetic nano-particles (MNPs) have been prepared in aqueous solution by a modified co-precipitation method. Surface modifications have been carried out using tetraethoxysilane (TEOS), triethoxysilane (TES) and 3-aminopropyltrimethoxysilane (APTMS). The uncoated and coated particle products have been characterized with transmission electron microscope (TEM), energy dispersive X-ray (EDX) spectroscopy, infrared (IR) and Raman spectroscopy, and thermal gravimetric analysis (TGA). The particle sizes were determined from TEM images and found to have mean diameters of 13, 16 and 14 nm for Fe3O4, TES/Fe3O4 and APTMS/Fe3O4, respectively. IR and Raman spectroscopy has been applied to study the effect of thermal annealing on the uncoated and coated particles. The results have shown that magnetite nano-particles are converted to maghemite at 109 °C and then to hematite by 500 °C. In contrast, the study of the effect of thermal annealing of micro-crystalline magnetite by IR spectroscopy revealed that the conversion to hematite began by 300 °C and that no maghemite could be identified as an intermediate phase. IR spectra and TGA measurements revealed that the Si-H and 3-aminopropyl functional groups in TES and APTMS coated magnetite nano-particles decomposed below 500 °C while the silica layer around the iron oxide core remained unchanged. The molecular ratio of APTMS coating to iron oxide core was determined to be 1:7 from the TGA data. Raman scattering signals have indicated that MNPs could be converted to maghemite and then to hematite using increasing power of laser irradiation in a manner similar to that observed for thermal annealing.  相似文献   

13.
G. Mangalam  C. Justin Raj 《Optik》2011,122(14):1296-1300
Single crystals of α-hopeite exhibiting high transparency were grown by single diffusion gel growth technique. Single crystal X-ray diffraction analysis reveals that the crystal belongs to orthorhombic system. The values of several structural and physical parameters have been determined for the grown crystal. The optical absorption study reveals the transparency of the crystal and is noticed in the entire visible region and the cut-off wavelength was found to be 230 nm. The optical band gap found to be at 3.25 eV. The dependence of extinction co-efficient (k) and the refractive index (n) on the wavelength was also shown. The dielectric constant and dielectric loss of the crystal was studied as a function of frequency and temperature. Transport properties of the grown crystal have been studied from the Cole-Cole plot.  相似文献   

14.
Series of [FePt(4min)/Fe(tFe)]10 multilayers have been prepared by RF magnetron sputtering and post-annealing in order to optimize their magnetic properties by structural designs. The structure, surface morphology, composition and magnetic properties of the deposited films have been characterized by X-ray diffractometer (XRD), Rutherford backscattering (RBS), scanning electron microscope (SEM), energy dispersive X-ray spectroscope (EDX) and vibrating sample magnetometer (VSM). It is found that after annealing at temperatures above 500 °C, FePt phase undergoes a phase transition from disordered FCC to ordered FCT structure, and becomes a hard magnetic phase. X-ray diffraction studies on the series of [FePt/Fe]n multilayer with varying Fe layer thickness annealed at 500 and 600 °C show that lattice constants change with Fe layer thickness and annealing temperature. Both lattice constants a and c are smaller than those of standard ones, and lattice constant a decreases as Fe layer deposition time increases. Only a slight increase in grain size was observed as Fe layer decreased in samples annealed at 500 °C. However, the increase in grain size is large in samples annealed at 600 °C. The coercivities of [FePt/Fe]n multilayers decrease with Fe layer deposition time, and the energy product (BH)max reaches a maximum in the samples with Fe layer deposition time of 3 min. Comparison of magnetic properties with structure showed an almost linear relationship between the lattice constant a and the coercivities of the FePt phase.  相似文献   

15.
Hexagonal and cubic cadmium selenide were prepared from a chemical route by using cadmium chloride and potassium selenium hydride obtained from reaction of selenium powder and potassium boron hydride. The product obtained was thermally treated under argon flux at 300, 500 and 600 °C for 2 h and characterized by X-ray photoelectron spectroscopy and X-ray diffraction. The X-ray diffraction data were refined by Rietveld method and the structural parameters were determined for the phases of each annealed samples. At 300 °C five phases were identified: Cubic and hexagonal cadmium selenides and the contaminants: Potassium chloride, boron oxide and cadmium boron oxide. At 500 and 600 °C only the hexagonal cadmium selenide phase was identified besides the other above mentioned contaminant.  相似文献   

16.
The dielectric properties of MgO-Ta2O5 continuous composition spread (CCS) thin films were investigated. The MgO-Ta2O5 CCS thin films were deposited on Pt/Ti/SiO2/Si substrates by off-Axis RF magnetron sputtering system, and then the films were annealed at 350 °C with rapid thermal annealing system in vacuum. The dielectric constant and loss of MgO-Ta2O5 CCS thin films were plotted via 1500 micron-step measuring. The specific point of Ta2O5-MgO CCS thin film (post annealed at 350 °C) showing superior dielectric properties of high dielectric constant (k ∼ 28) and low dielectric loss (tan δ < 0⋅004) at 1 MHz were found in the area of 3-5 mm apart from Ta2O5 side on the substrate. The cation's composition of thin film was Mg:Ta = 0.4:2 at%.  相似文献   

17.
A gate insulator film with a wide bandgap and a high dielectric constant is required to achieve high-power field effect transistors (FET) using wide bandgap semiconductors such as SiC, GaN, and diamond. It is observed that an aluminum silicon oxide (AlSiO) film containing 11% nitrogen has a high resistivity of 5 × 1015 Ω cm, and the leakage current of a nitrogen-doped aluminum silicon oxide (AlSiON) film is also suppressed at high temperature, as compared to the AlSiO film. For example, the leakage current at 240 °C is four orders of magnitude smaller than that of the AlSiO film, suggesting that the AlSiON film is applicable to high temperature operation of wide bandgap semiconductor devices.  相似文献   

18.
Nano-structure pure barium titanate (BaTiO3) and that was doped with iron oxide (Fe2O3), have been prepared by sol-gel method, using barium acetate (Ba(Ac)2) and titanium butoxide (Ti(C4H9O)4), as precursors. The as-grown prepared samples by sol-gel technique were found to be amorphous, which crystallized to the tetragonal phase after synthesized at 750 °C in air for 1 h as detected from the XRD patterns. The XRD data were confirmed by transmission electron microscope (TEM). The dielectric properties namely; dielectric constant (ε′) and loss tangent (tan δ) in the frequency range between 42 Hz and 1 MHz, at range of temperature 25-250 °C were investigated. The temperature dependence of ε′ and tan δ for the undoped and doped materials, at 1 kHz, was also investigated. As a result, tan δ increased rapidly with decreasing temperature below 125 °C (Curie temperature) while above this temperature, tan δ shows temperature independent. As a result, below and above Curie temperature, ferroelectric phase and paraelectric phase of BaTiO3 can be obtained, respectively.  相似文献   

19.
High-k gate dielectric HfO2 thin films have been deposited on Si(1 0 0) by using plasma oxidation of sputtered metallic Hf thin films. The optical and electrical properties in relation to postdeposition annealing temperatures are investigated by spectroscopic ellipsometry (SE) and capacitance-voltage (C-V) characteristics in detail. X-ray diffraction (XRD) measurement shows that the as-deposited HfO2 films are basically amorphous. Based on a parameterized Tauc-Lorentz dispersion mode, excellent agreement has been found between the experimental and the simulated spectra, and the optical constants of the as-deposited and annealed films related to the annealing temperature are systematically extracted. Increases in the refractive index n and extinction coefficient k, with increasing annealing temperature are observed due to the formation of more closely packed thin films and the enhancement of scattering effect in the targeted HfO2 film. Change of the complex dielectric function and reduction of optical band gap with an increase in annealing temperature are discussed. The extracted direct band gap related to the structure varies from 5.77, 5.65, and 5.56 eV for the as-deposited and annealed thin films at 700 and 800 °C, respectively. It has been found from the C-V measurement the decrease of accumulation capacitance values upon annealing, which can be contributed to the growth of the interfacial layer with lower dielectric constant upon postannealing. The flat-band voltage shifts negatively due to positive charge generated during postannealing.  相似文献   

20.
Sodium acid phthalate (SAP), an efficient semi-organic crystal having dimensions 17×8×2 mm3 has been grown from aqueous solution by slow evaporation technique at room temperature within the period of 2 weeks. The lattice parameters of the grown crystals were determined using single-crystal X-ray diffraction analysis. The presence of functional groups was estimated qualitatively by Fourier transform infrared (FTIR) analysis. The band gap energy was determined using optical absorption studies. The TG/DTA analysis reveals that the SAP crystal is thermally stable up to 141.6 °C. The dielectric constant and dielectric loss was studied as a function of frequency and the corresponding activation energy (Ea) has been calculated for the grown crystal. Scanning electron microscope studies enunciate the ferroelectric domain patterns of the SAP crystal. Ferroelectric property of the grown crystal was confirmed by hysteresis loop studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号