首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The binding energies of a hydrogenic donor in a GaAs spherical quantum dot in the Ga1−xAlxAs matrix are presented assuming parabolic confinement. Effects of hydrostatic pressure and electric field are discussed on the results obtained using a variational method. Effects of the spatial variation of the dielectric screening and the effective mass mismatch are also investigated. Our results show that (i) the ionization energy decreases with dot size, with the screening function giving uniformly larger values for dots which are less than about 25 nm, (ii) the hydrostatic pressure increases the donor ionization energy such that the variation is larger for a smaller dot, and (iii) the ionization energy decreases in an electric field. All the calculations have been carried out with finite barriers and good agreement is obtained with the results available in the literature in limiting cases.  相似文献   

2.
Within the framework of effective mass approximation, the binding energy of a hydrogenic donor impurity in zinc-blende GaN/AlxGa1−xN spherical quantum dot (QD) is investigated using the plane wave basis. The results show that the binding energy is highly dependent on impurity position, QD size, Al content and external field. The binding energy is largest when the donor impurity is located at the centre of the QD and the binding energy of impurity is degenerate for symmetrical positions with respect to the centre of QD without the external electric field. The maximum of the donor binding energy is shifted from the centre of QD and the degenerating energy levels for symmetrical positions with respect to the centre of QD are split in the presence of the external electric field. The binding energy is more sensitive to the external electric field for the larger QD and lower Al content. In addition, the Stark shift of the binding energy is also calculated.  相似文献   

3.
4.
Applying the classical-map hypernetted-chain method (CHNC) developed recently by Dharma-wardana and Perrot, we have studied the temperature and spin-polarization effects on electron correlation in the uniform quantum two-dimensional gas (2DEG) over a wide range of temperature T and spin-polarization ζ. The quantum fluid at the temperature T is mapped to a classical fluid at the temperature Tcf given by Tcf2=T2+Tq2, where the quantum temperature Tq is determined by comparing the calculated correlation energy to that of Monte Carlo results for the fully spin-polarized quantum system at zero temperature. By the iterative solution of the modified HNC equation and the Ornstein-Zernike equation, we have obtained the pair distribution function (PDF) and correlation energy for the two-component classical 2DEG with a classical fluid temperature Tcf. The anti-parallel bridge function B12(r) appearing in the modified HNC equation is determined by using the Monte Carlo correlation energy at T=0 or STLS (Singwi-Tosi-Land-Sjölander) result at T>0 and the numerical solution to the Percus-Yevick (PY) equation for the system of hard disks. By calculating the Pauli potential, the bridge function, PDFs, structure factors and correlation energy, we have shown that in some cases, the properties of the uniform quantum 2DEG depend remarkably on the temperature and spin-polarization.  相似文献   

5.
We investigate the conductivity σ of graphene nanoribbons with zigzag edges as a function of Fermi energy EF in the presence of the impurities with different potential range. The dependence of σ(EF) displays four different types of behavior, classified to different regimes of length scales decided by the impurity potential range and its density. Particularly, low density of long range impurities results in an extremely low conductance compared to the ballistic value, a linear dependence of σ(EF) and a wide dip near the Dirac point, due to the special properties of long range potential and edge states. These behaviors agree well with the results from a recent experiment by Miao et al. [Science 317 (2007) 1530 (SOM)].  相似文献   

6.
The carbon incorporation in strained-Si source/drain of MOSFET is demonstrated. The methylsilane (CH3SiH3) is chosen as the carbon precursor to make high percentage of substitutional carbon, and less defects by interstitials and vacancies. The large Dit at oxide/strained-Si:C interface degrades the expected carrier mobility enhancement, but improvement is observed after forming gas annealing. The strained-Si source/drain with carbon incorporation is not only being stressor but also lower Rs, and make a potential candidate for future high-speed ballistic devices beyond 10 nm technology node.  相似文献   

7.
In the near vicinity of Peierls transition temperature TP, we have measured the V-I characteristics of the quasi-one-dimensional conductor TaS3 under dark and photo-irradiation conditions. It is found that a significant enhancement of CDW current occurs only around the threshold voltage Vt under photo-irradiation. This effect can be interpreted as a result of screening of pinning potential for CDW condensate by photo-excited quasi-particles (QP's). Further the distribution of pinning potential intensity is reflected in the behavior of V-I characteristics near Vt. Our finding suggests that the strength of pinning potential can be controlled by the photo-excited QP's in quasi-1D conductors.  相似文献   

8.
Within the framework of effective-mass approximation, the binding energy of a hydrogenic donor impurity in a zinc-blende (ZB) InGaN/GaN cylindrical quantum dot (QD) is investigated using a variational procedure. Numerical results show that the donor binding energy is highly dependent on impurity position and QD size. The donor binding energy Eb is largest when the impurity is located at the center of the QD. The donor binding energy is decreased when the dot height (radius) is increased.  相似文献   

9.
We present first-principles simulations of As-doped Si carried out using several cubic supercells of up to 10 648 atoms. The 1s As donor level in each supercell splits into three states, which have A1, T2, and E symmetries, respectively. The 1s(A1) wavefunction is well converged in the largest cell, and its spread is close to those of the effective-mass theories. However, the calculated binding energies are smaller than experimental values. This discrepancy would be due to the self-interaction error within the approximated exchange-correlation density functional used in this calculation. Therefore, we also show perturbative calculations based on an impurity potential without the self-interaction error to estimate the binding energies of the 1s(A1) donor state. The estimated binding energy in the largest supercell agrees well with the experimental value.  相似文献   

10.
The binding energy of a hydrogenic donor impurity in zinc-blende (ZB) InGaN quantum dot (QD) is calculated in the framework of effective-mass envelope-function theory using the plane wave basis. It is shown that the donor binding energy is highly dependent on the impurity position, QD size and the external electric field. The symmetry of the electron probability distribution is broken and the maximum of the donor binding energy is shifted from the centre of QD in the presence of the external electric field. The degenerating energy levels for symmetrical positions with respect to the centre of QD are split. The splitting increases with the increase of QD height while the splitting increases up to a maximum value and then decreases with the increase of QD radius.  相似文献   

11.
Wenfang Xie 《Physics letters. A》2008,372(33):5498-5500
A investigation of the nonlinear optical properties of a hydrogenic donor in a disc-like parabolic quantum dot has been performed by using the matrix diagonalization method. The optical absorption coefficient between the ground (L=0) and the first excited state (L=1) have been examined based on the computed energies and wave functions. The results are presented as a function of the incident photon energy for the different values of the incident optical intensity and the confinement strength. We found the total optical absorption coefficient is strongly affected by the incident optical intensity and the confinement strength.  相似文献   

12.
The temperature dependence of bandgap energy of GaAs0.98N0.02 and Ga0.95In0.05As0.98N0.02 compounds has been analysed in order to determine the CMN matrix element of the band anticrossing model. We have found that the element equals 2.48 and 2.60 eV for GaAs0.98N0.02 and Ga0.95In0.05As0.98N0.02 layers, respectively. When the same value has been assumed for annealed layers, an increase in the energy of the resonant nitrogen level EN has been obtained. Two possible mechanisms leading to the increase in this energy are discussed in this work.  相似文献   

13.
The ratio of atomic orbitals contributing to the valence band can be determined from the photoelectron intensity angular distribution (PIAD) by using linearly polarized light and display-type spherical mirror analyzer. The experiment was done for MoS2 using a linearly polarized light at the photon energy of 45 eV perpendicularly incident to the sample surface. Atomic orbitals contributing to the bands near the Fermi level were investigated. The PIAD patterns around the Γ point showed splitting of intensity. The intensity at the top and bottom K points was strong, while the intensity was weak at the left and right side K points. The PIAD patterns from various kinds of atomic orbitals were calculated. By comparing the experimental PIAD patterns to the simulated ones, we concluded that at the Γ point Mo 4dz2 and S 3pz atomic orbitals are the main components and at the K points the Mo 4dxy atomic orbital is dominant. The atomic orbital Mo 4dx2−y2 also gives contribution to the PIAD pattern. These results were in good agreement with the coefficients of the atomic orbitals derived using ab initio band calculation.  相似文献   

14.
The ground state and a few excited state energies of a hydrogenic donor in a spherical quantum dot (GaAs in a GaAlAs matrix) are computed. While the 1s and the 2s-state energies behave normally for dots of all radii, the 2p0 and 2p± states are unbound for most of the radii of interest. It is predicted that a semiconductor quantum dot with a hydrogenic donor will exhibit photoconductivity for a low threshold wavelength ∼12 μm. The spin-orbit coupling gives a contribution of the order of 10−5 meV for both 2p0 and 2p± states.  相似文献   

15.
The ground state donor binding energy is estimated using the simple first order perturbation method for a GaAs-Al x Ga1−x As spherical quantum dot. The calculated energy is computed as a function of Al-concentration. Donor binding energy is found to be quite sensitive to Al-concentration (x), specifically for smallx. Furthermore, the binding energy is found to be highest for the smallest and the center-doped dot indicating the strongest confinement in those cases.  相似文献   

16.
We have studied the influence of nonlinear elastic effects on the pressure coefficients of light emission, dEE/dP, in cubic InGaN/GaN quantum wells. By means of ab-initio calculations, we have determined the pressure dependences of the elastic constants, C11, C12 and C44 in zinc-blende InN and GaN. Further, we show that the pressure dependence of the elastic constants results in significant reduction of dEE/dP in cubic InGaN/GaN quantum wells and essentially improves the agreement between experimental and theoretical values.  相似文献   

17.
Motional activation enthalpies have been calculated for interstitial cations in the rutile structure, using a minimum energy path approach. Coulombic, overlap repulsion and polarization energy terms were included in the potential energy expression. Preexponential factors in the overlap repulsion terms were evaluated by minimizing of the total electrostatic energy, and permanent dipole moments of the anion by an iterative method. The most favorable diffusion path was found to be parallel to the c-axis in the 12, 0, z direction in both TiO2 and MgF2.Motional activation enthalpies increased with increasing interstitial cation radius and were larger in TiO2 than in MgF2. The path was independent of radius and material. Strongly anisotropic conductivity was predicted for both compounds.  相似文献   

18.
The problem of Bloch electrons in two dimensions subjected to magnetic and intense electric fields is investigated. Magnetic translations, electric evolution, and energy translation operators are used to specify the solutions of the Schrödinger equation. For rational values of the magnetic flux quanta per unit cell and commensurate orientations of the electric field relative to the original lattice, an extended superlattice can be defined and a complete set of mutually commuting space-time symmetry operators is obtained. Dynamics of the system is governed by a finite difference equation that exactly includes the effects of: an arbitrary periodic potential, an electric field orientated in a commensurable direction of the lattice, and coupling between Landau levels. A weak periodic potential broadens each Landau level in a series of minibands, separated by the corresponding minigaps. The addition of the electric field induces a series of avoided and exact crossing of the quasienergies, for sufficiently strong electric field the spectrum evolves into equally spaced discreet levels, in this “magnetic Stark ladder” the energy separation is an integer multiple of hE/aB, with a the lattice parameter.  相似文献   

19.
The structure and electronic properties of epitaxial grown CeO2(1 1 1) thin films before and after Ar+ bombardment have been comprehensively studied with synchrotron radiation photoemission spectroscopy (SRPES). Ar+ bombardment of the surface causes a new emission appearing at 1.6 eV above the Fermi edge which is related to the localized Ce 4f1 orbital in the reduced oxidation state Ce3+. Under the condition of the energy of Ar ions being 1 keV and a constant current density of 0.5 μA/cm2, the intensity of the reduced state Ce3+ increases with increasing time of sputtering and reaches a constant value after 15 min sputtering, which corresponds to the surface being exposed to 2.8 × 1015 ions/cm2. The reduction of CeO2 is attributed to a preferential sputtering of oxygen from the surface. As a result, Ar+ bombardment leads to a gradual buildup of an, approximately 0.69 nm thick, sputtering altered layer. Our studies have demonstrated that Ar+ bombardment is an effective method for reducing CeO2 to CeO2−x and the degree of the reduction is related to the energy and amount of Ar ions been exposed to the CeO2 surface.  相似文献   

20.
We evaluated the adsorption energy of a hydrogen molecule in nanocarbons consisting of graphene sheets. The nanocarbon shapes were a pair of disks with separation 2d, a cylinder with radius d, and a truncated sphere with radius d. We obtained the adsorption energy in the form of a 10–4 Lennard–Jones function with respect to 1/d. The values of the potential depth (D) and equilibrium distance (d e), respectively, were 94 meV and 2.89 Å for the disk pair, 158 meV and 3.14 Å for the cylinder, and 203 meV and 3.37 Å for the sphere. When d=d e, the adsorption energy of the disk pair (cylinder) became deeper than ?0.9D, and it approached ?D when the radius (length) increased to more than twice its separation (radius). The adsorption energy of the sphere was increased from ?D to ?0.5D when the radius of the opening increased from 0 to d e. These results suggest that porous carbon materials can increase the adsorption energy by up to ~200 meV if the carbon atoms are arranged on a spherical-like surface with ~7 Å separation. This may lead to practical hydrogen storage for fuel cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号