首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The density functional theory (DFT) calculations of structural, elastic, electronic and optical properties of the cubic antiperovskite AsNMg3 has been reported using the pseudo-potential plane wave method (PP-PW) within the generalized gradient approximation (GGA). The equilibrium lattice, bulk modulus and its pressure derivative have been determined. The elastic constants and their pressure dependence are calculated using the static finite strain technique. We derived the bulk and shear moduli, Young's modulus and Poisson's ratio for ideal polycrystalline AsNMg3 aggregate. We estimated the Debye temperature of AsNMg3 from the average sound velocity. This is the first quantitative theoretical prediction of the elastic properties of AsNMg3 compound, and it still awaits experimental confirmation. Band structure, density of states and pressure coefficients of energy gaps are also given. The fundamental band gap (Γ-Γ) initially increases up to 4 GPa and then decreases as a function of pressure. Furthermore, the dielectric function, optical reflectivity, refractive index, extinction coefficient, and electron energy loss are calculated for radiation up to 30 eV. The all results are compared with the available theoretical and experimental data.  相似文献   

2.
The structural and elastic properties of the cubic perovskite-type BiAlO3 are studied using the pseudopotential plane wave method within the local density approximation. The calculated structural parameters are in good agreement with previous calculations. The elastic constants are calculated using the static finite strain technique. Thermal effects on some macroscopic properties of BiAlO3 are predicted using the quasi-harmonic Debye model, in which the lattice vibrations are taken in account. We have obtained successfully the variations of the lattice constant, volume expansion coefficient, heat capacities and Debye temperature with pressure and temperature in the ranges of 0-30 GPa and 0-1000 K.  相似文献   

3.
We have investigated structural and elastic properties of PtN2 under high pressures using norm-conserving pseudopotentials within the local density approximation (LDA) in the frame of density-functional theory. Calculated results of PtN2 are in agreement with experimental and available theoretical values. The a/a0, V/V0, ductility/brittleness, elastic constants Cij, shear modulus C′, bulk modulus B, shear modulus G, Young's modulus E, Poisson's ratio σ and anisotropy factor A as a function of applied pressure are presented. Through the quasi-harmonic Debye model, we also study thermodynamic properties of PtN2. The thermal expansion versus temperature and pressure, thermodynamic parameters X (X=Debye temperature or specific heat) with varying pressure P, and heat capacity of PtN2 at various pressures and temperatures are estimated.  相似文献   

4.
First-principles calculations of the crystal structure and the elastic properties of RuB2 have been carried out with the plane-wave pseudopotential density functional theory method. The calculated values are in very good agreement with experimental data as well as with some of the existing model calculations. The elastic constants cij, the aggregate elastic moduli (B, G, E), Poisson's ratio, and the elastic anisotropy with pressure have been investigated. Through the quasi-harmonic Debye model considering the phonon effects, the isothermal bulk modulus, the thermal expansions, Grüneisen parameters, and Debye temperatures depending on the temperature and pressure are obtained in the whole pressure range from 0 to 60 GPa and temperature range from 0 to 1100 K as well as compared to available data.  相似文献   

5.
First-principles calculations have been performed on the face-centered cubic (FCC) magnesium-transition metal (TM) hydrides Mg7TMH16 (TM=Sc, Ti, V, Y, Zr, Nb). The cohesive energies are calculated to analyze the stability, and the obtained enthalpies of formation for hydrides Mg7TMH16 have been used to investigate the possible pathways of formation reaction. The calculated enthalpy changes show that the decomposition temperatures of Mg7TMH16 are lower than that of MgH2. The electronic densities of states reveal that all the hydrides studied here exhibit metallic characteristics. The bonding nature of Mg7TMH16 is investigated, showing stronger covalent bonding between TM and H than between Mg and H.  相似文献   

6.
The full potential linearized augmented plane wave (FP-LAPW) method with the GGA+U approach was applied to study the electronic structures of the compound Eu6C60. Present calculations show that the hybridization between the Eu s, d state and the C60 π states plays an essential role in its FM exchange interactions between the 4f electrons and metallic properties.  相似文献   

7.
We present first-principles calculations on the structure instability and the electronic structure properties of cubic Ba0.5Sr0.5TiO3 (BST). The calculated total energy result shows that the Sr ions have a more important effect on the structure instability of BST system than the Ba ions. The off-center displacement of the Sr ions will lower the system energy and makes it instable. In order to understand the interaction between ions, the density of states and the charge density distribution were calculated. From the analysis of the density of states, we conclude that the hybridization between Ba p and O p is stronger than that between Sr p and O p. This is consistent with the analysis of the charge density distribution.  相似文献   

8.
Electronic structure and optical properties of SrHfO3 are calculated using the full potential linearized augmented plane wave plus local orbitals method. The calculated equilibrium lattice is in reasonable agreement with the experimental data. From the density of states (DOS) as well as charge density studies, we find that the bonding between Sr and HfO3 is mainly ionic and that HfO3 entities bond covalently. The complex dielectric functions are calculated, which are in good agreement with the available experimental results. The effect of the spin-orbit coupling on the optical properties is also investigated and found to be quite small.  相似文献   

9.
The electronic structure and the optical properties of In6S7 crystal are calculated by the first-principles full-potential linearized augmented plane wave method (FP-LAPW) using density functional theory (DFT) in its generalized gradient approximation (GGA). The calculated band structure shows that the In6S7 is a semiconductor with a direct band gap in good agreement with experimental studies. Furthermore, the dielectric tensor and the optical properties, such as absorption coefficient, refractive index, extinction coefficient, energy-loss spectrum and reflectivity, are derived and analyzed in the study.  相似文献   

10.
We have performed relativistic first-principles full-potential linearized augmented plane wave (FLAPW) calculation for rare earth palladium sulfide EuPd3S4 in the ferromagnetic and antiferromagnetic states. The density of 4f electrons of Eu is taken from a local-spin-density approximation self-interaction correction (LSDA-SIC) atomic calculation. EuPd3S4 is found to exhibit antiferromagnetic ordering in its ground state. The charge, orbital, magnetic moment and spin ordering are explained with the electronic structure, the orbital-projected density of states and the total energy study. EuPd3S4 is found to be stable in the body-centered Type-I antiferromagnetic state, in agreement with experimental results. Different Eu states are found in antiferromagnetic ordering. The magnetic moments of different states obtained through spin-polarized calculation are also in good agreement with experimental results. The phenomena observed are explained by the orbital hybridization of Eu and Pd ions as compared with the free ions.  相似文献   

11.
The electronic structure of β-Na0.33V2O5 has been evaluated using the first-principle density functional theory approach. All energy bands near the Fermi surface (FS) disperse principally along the b-axis direction indicating the quasi-one-dimensionality of this system. The theoretical simulation of the optical property yields reasonable explanations for the notable features revealed in the measurements of the optical spectroscopy. Superconductivity appearing under a pressure of 8 GPa has been discussed in connection with the pressure-induced structural and bands alternations. It is suggested that the strong interchain coupling could play a key role in the appearance of superconductivity. The electron correlation effects on the electronic structure have also been calculated and discussed in comparison with photoemission data.  相似文献   

12.
The structural stability of CeAg has been studied by self-consistent full-potential linearized augmented plane wave method (FP_LAPW) based on the density functional theory (DFT). The result shows that the low-temperature phase of CeAg is not a simple tetragonal structure. The degenerate d states at the Fermi level are split because of atomic shifts, which result in the cubic-to-tetragonal transition.  相似文献   

13.
We have studied the electronic structure of β-Ga2O3 using the first principles full-potential linearized augmented plane wave method. It is found that β-Ga2O3 has an indirect band gap with a conduction band minimum (CBM) at Γ point and a valence band maximum on the E line. The anisotropic optical properties are explained by the selection rule of the band-to-band transitions. On the other hand, the shape of the CBM is almost isotropic and, therefore, the observed electronic anisotropy in the n-type semiconducting state should not be attributed to the properties of a perfect lattice. The Burstein-Moss shift is discussed using the effect of several allowed transitions between the levels of the valence band and the CBM.  相似文献   

14.
A theoretical study of structural, electronic and optical properties of cubic BaTiO3 and BaZrO3 perovskites is presented, using the full-potential linear augmented plane wave (FP-LAPW) method as implemented in the WIEN2K code. In this approach the local density approximation (LDA) is used for the exchange-correlation (XC) potential. Results are given for lattice constant, bulk modulus, its pressure derivative, band structure, density of states, pressure coefficients of energy gaps and refractive indices. The results are compared with previous calculations and experimental data.  相似文献   

15.
The magnetic properties, electronic structure, and optical properties of the filled skutterudite BaFe4Sb12 are calculated by the first-principles full-potential linearized augmented plane wave (FPLAPW) plus local orbital method. It is found that the local spin density approximation (LSDA) method appears more accurate than the generalized gradient approximation (GGA) method in calculating the electronic structures and optical properties of this compound. Furthermore, our calculated lattice constant and spin magnetic moments with the LSDA method are in overall better agreement with experiment. In contrast with recent experiment, our calculations are in good agreement with experimental reflectivity spectra and optical conductivity spectrum.  相似文献   

16.
First principles study of structural, elastic, electronic and optical properties of the cubic perovskite-type BaHfO3 has been reported using the pseudo-potential plane wave method within the local density approximation. The calculated equilibrium lattice is in a reasonable agreement with the available experimental data. The elastic constants and their pressure dependence are calculated using the static finite strain technique. A linear pressure dependence of the elastic stiffnesses is found. Band structures show that BaHfO3 is a direct band gap between the occupied O 2p and unoccupied Hf d states. The variation of the gap versus pressure is well fitted to a quadratic function. Furthermore, in order to understand the optical properties of BaHfO3, the dielectric function, absorption coefficient, optical reflectivity, refractive index, extinction coefficient, and electron energy loss are calculated for radiation up to 30 eV. We have found that O 2p states and Hf 5d states play a major role in the optical transitions as initial and final states, respectively. This is the first quantitative theoretical prediction of the elastic, electronic and optical properties of BaHfO3 compound, and it still awaits experimental confirmation.  相似文献   

17.
The electronic, structural properties and optical properties of the rutile TiO2 have been reported using the full potential linearized augmented plane wave (FP-LAPW) method as implemented in the WIEN2K code. We employed the generalized gradient approximation (GGA), which is based on exchange-correlation energy optimization to calculate the total energy. Also we have used the Engel-Vosko GGA formalism, which optimizes the corresponding potential for band structure calculations. Our results including lattice parameter, bulk modulus, density of states, the reflectivity spectra, the refractive index and band gap are compared with the experimental data. We present calculations of the frequency-dependent complex dielectric function ε(ω) and its zero-frequency limit ε1(0).  相似文献   

18.
The electronic structure and the magnetic properties of transition metal phosphonate Co(PhPO3)·H2O have been studied by first-principles within the density-functional theory (DFT) and the full potential linearized augmented plane wave (FP-LAPW) method. The total energy, the total magnetic moment, the atomic spin magnetic moments and the density of states(DOS) of Co(PhPO3)·H2O were all calculated. The calculations reveal that the title compound is a metallic antiferromagnet and has a metallic ferromagnetic metastable state, which are in good agreement with the experiment. The spin magnetic moment of Co(PhPO3)·H2O is about 4.93 μBμB per molecule, and it is mainly assembled at the cobalt atom, at the same time, with a little contribution from the P, O1, O2, O3.  相似文献   

19.
The structural parameters, elastic, electronic, and optical properties of hexagonal BiAlO3 were investigated by the density functional theory. The calculated structural parameters are in good agreement with previous calculation and experimental data. The structural stability of BiAlO3 has been confirmed by calculation of the elastic constants. The energy band structure, density of states, and Mulliken charge populations were obtained. BiAlO3 presents an indirect band gap of 3.28 eV. Furthermore, the optical properties were calculated and analyzed. It is shown that BiAlO3 is a promising dielectric material.  相似文献   

20.
We have investigated electronic and magnetic properties of hexagonal, tetragonal, and orthorhombic GdSi2, using the full-potential linearized augmented plane-wave method based on general gradient approximation for exchange-correlation potential. Antiferromagnetic (AFM) states of the GdSi2 are found from total energy calculations to be energetically more stable, compared to ferromagnetic (FM) states in all of the considered present crystal structures. It is in good agreement with an experimental result. The calculated magnetic moments of valence electrons of the Gd atoms are 0.16, 0.14, and 0.14 μB for hexagonal, tetragonal, and orthorhombic crystal structures in AFM states, respectively, and the Si atoms are coupled antiferromagnetically to the Gd atoms irrespective of crystal structure even though their magnitudes are negligible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号