首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cation deficient polycrystalline Tb1−xMnO3 (x= 0.05, 0.10) and TbMn1−yO3 (y =0.05, 0.10) samples were fabricated by conventional solid-state reaction. The complex dielectric properties of the cation deficient TbMnO3 were investigated as the function of temperature (77 K≤T≤350 K) and frequency (100 Hz≤ f≤ 200 kHz) separately. Compared to the parent TbMnO3, the cation deficient TbMnO3 samples exhibit not only high dielectric constant but also low dissipation factor. Nyquist plots of complex impedance show that the dielectric properties originate from two main relaxation sources, i.e. bulk contributions and grain boundary effects.  相似文献   

2.
(Na0.85K0.15)0.5Bi0.5TiO3 thin films were deposited on LaNiO3(LNO)/SiO2/Si(1 0 0) and Pt/Ti/SiO2/Si(1 0 0) substrates by metal-organic decomposition, and the effects of bottom electrodes LNO and Pt on the ferroelectric, dielectric and piezoelectric properties were investigated by ferroelectric tester, impedance analyzer and scanning probe microscopy, respectively. For the thin films deposited on LNO and Pt electrodes, the remnant polarization 2Pr are about 22.6 and 8.8 μC/cm2 under 375 kV/cm, the dielectric constants 238 and 579 at 10 kHz, the dielectric losses 0.06 and 0.30 at 10 kHz, the statistic d33eff values 95 and 81 pm/V. The improved piezoelectric properties could make (Na1−xKx)0.5Bi0.5TiO3 thin film as a promising candidate for piezoelectric thin film devices.  相似文献   

3.
The effects of vanadium(V) doping into SrBi4Ti4O15 (SBTi) thin films on the structure, ferroelectric, leakage current, dielectric, and fatigue properties have been studied. X-ray diffraction result showed that the crystal structure of the SBTi thin films with and without vanadium is the same. Enhanced ferroelectricity was observed in the V-doped SrBi4Ti4O15 (SrBi4−x/3Ti4−xVxO15, SBTiV-x (x = 0.03, 0.06, and 0.09)) thin films compared to the pure SrBi4Ti4O15 thin film. The values of remnant polarization (2Pr) and coercive field (2Ec) of the SBTiV-0.09 thin film capacitor were 40.9 μC/cm2 and 105.6 kV/cm at an applied electric field of 187.5 kV/cm, respectively. The 2Pr value is over five times larger than that of the pure SBTi thin film capacitor. At 100 kHz, the values of dielectric constant and dielectric loss were 449 and 0.04, and 214 and 0.06 for the SBTiV-0.09 and the pure SBTi thin film capacitors, respectively. The leakage current density of the SBTiV-0.09 thin film capacitor measured at 100 kV/cm was 6.8 × 10−9 A/cm2, which is more than two and a half orders of magnitude lower than that of the pure SBTi thin film capacitor. Furthermore, the SBTiV-0.09 thin film exhibited good fatigue endurance up to 1010 switching cycles. The improved electrical properties may be related to the reduction of internal defects such as bismuth and oxygen vacancies with changes in the grain size by doping of vanadium into SBTi.  相似文献   

4.
Bismuth doped bismuth sodium titanate ceramics [(Bi1/2Na1/2)(1−1.5x)BixTiO3, x=0 to 0.06] were prepared, and the resulting effects on the microstructure and dielectric properties were examined. All of the Bi-doped ceramics exhibited a single phase of perovskite structure with rhombohedral symmetry. The poling leakage current was significantly reduced by the doping of Bi, facilitating the poling process of the ceramics. The doping with Bi enhances the piezoelectric properties and increases the dielectric constant and the dielectric loss of the ceramics. At 2 mol% Bi-doping level, the ceramics exhibit a large remanent polarization of 47 μC/cm2 and a relatively low coercive field of 71 kV/cm, while their d33 and kp reach a maximum value of 95 pC/N and 21%, respectively.  相似文献   

5.
Oxonitridosilicate phosphors with compositions of (Y1−xCex)2Si3O3N4 (x=0−0.2) have been synthesized by solid state reaction method. The structures and photoluminescence properties have been investigated. Ce3+ ions have substituted for Y3+ ions in the lattice. The emission and excitation spectra of these phosphors show the characteristic photoluminescence spectra of Ce3+ ions. Based on the analyses of the diffuse reflection spectra and the PL spectra, a systematic energy diagram of Ce3+ ion in the forbidden band of sample with x=0.02 is given. The best doping Ce content in these phosphors is ∼2 mol%. The quenching temperature is ∼405 K for the 2 mol% Ce content sample. The luminescence decay properties were investigated. The primary studies indicate that these phosphors are potential candidates for application in three-phosphor-converted white LEDs.  相似文献   

6.
In this work, ((1−x)Ba(Fe1/2Ta1/2)O3-xBa(Zn1/3Ta2/3)O3), ((1−x)BFT-xBZT) ceramics with x = 0.00–0.12 were synthesized by the solid–state reaction method. X-ray diffraction data revealed that both the powders and ceramics were of a pure-phase cubic perovskite structure. All ceramics showed large dielectric constants. For the x = 0.12 sample, a very high dielectric constant (>20,600) was observed. A lowering in the dielectric loss compared to pure BFT ceramics was observed with the BZT addition. The impedance measurements indicated that BZT has a strong effect on the bulk grain and grain boundary resistance of BFT ceramics. These results are in agreement with the measured dielectric properties. Based on dielectric and impedance results, (1−x)BFT-xBZT ceramics could be of great interest for high performance dielectric materials applications due their giant dielectric constant behavior.  相似文献   

7.
BiFeO3/Zn1−xMnxO (x = 0-0.08) bilayered thin films were deposited on the SrRuO3/Pt/TiO2/SiO2/Si(1 0 0) substrates by radio frequency sputtering. A highly (1 1 0) orientation was induced for BiFeO3/Zn1−xMnxO. BiFeO3/Zn1−xMnxO thin films demonstrate diode-like and resistive hysteresis behavior. A remanent polarization in the range of 2Pr ∼ 121.0-130.6 μC/cm2 was measured for BiFeO3/Zn1−xMnxO. BiFeO3/Zn1−xMnxO (x = 0.04) bilayer exhibits a highest Ms value of 15.2 emu/cm3, owing to the presence of the magnetic Zn0.96Mn0.04O layer with an enhanced Ms value.  相似文献   

8.
Ca2+ and Ba2+ ions co-doped BiFeO3 nanoparticles, Bi0.8Ca0.2−xBaxFeO3 (x=0-0.20), were prepared by a sol-gel method. The phase structure, grain size, dielectric and magnetic properties of the prepared samples were investigated. The results showed that the lattice structure of the nanoparticles transformed from rhombohedral (x=0) to orthorhombic (x=0.07-0.19) and then to tetragonal (x=0.20) with x increased. The dielectric properties of the nanoparticles were affected by the properties of the substitutional ions as well as the crystalline structure of the samples. The magnetic properties of the nanoparticles were greatly improved and the TN of the nanoparticles was obviously increased. All the Ca2+ and Ba2+ ions co-doped BiFeO3 nanoparticles presented the high ratio of Mr/M from 0.527 to 0.571 and large coercivity from 4.335 to 5.163 KOe.  相似文献   

9.
The red phosphors NaY1−xEux(WO4)2 with different concentrations of Eu3+ were synthesized via the combustion synthesis method. As a comparison, NaEu(WO4)2 was prepared by the solid-state reaction method. The phase composition and optical properties of as-synthesized samples were studied by X-ray powder diffraction and photoluminescence spectra. The results show that the red light emission intensity of the combustion synthesized samples under 394 nm excitation increases with increase in Eu3+ concentrations and calcination temperatures. Without Y ions doping, the emission spectra intensity of the NaEu(WO4)2 phosphor prepared by the combustion method fired at 900 °C is higher than that prepared by the solid-state reaction at 1100 °C. NaEu(WO4)2 phosphor synthesized by the combustion method at 1100 °C exhibits the strongest red emission under 394 nm excitation and appropriate CIE chromaticity coordinates (x=0.64, y=0.33) close to the NTSC standard value. Thus, its excellent luminescence properties make it a promising phosphor for near UV InGaN chip-based red-emitting LED application.  相似文献   

10.
In this work, the influence of Lu2O3 doped on the dielectric and electrical properties of CaCu3Ti4O12 was reported. Lu2O3-doped CCTO was prepared by a conventional solid state technique using CuO, TiO2, and CaCO3 as starting materials. The samples were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM); dielectric measurements were measured in the 102 Hz–107 Hz frequency range at room temperature; and the nonlinear behavior of all samples was measured. The doping of Lu2O3 resulted in an increase in the dielectric constant of CCTO, but decreased the stability of the frequency dependence. Increasing concentrations of Lu2O3 resulted in decreasing nonlinear coefficients.  相似文献   

11.
The effect of N2 treatment on the photocatalytic activity of Pt0/TiO2 was investigated. The results showed that after treatment at 500 °C in N2, 70% of the photocatalytic activity of 1.0 wt.% Pt0/TiO2 was lost by the evaluation of photocatalytic oxidation reaction of C3H6. Transmission electron microscopy (TEM) and Ar+ ion sputtering tests revealed that in the course of high-temperature N2 treatment, the size of Pt0 particles on TiO2 increases and a strong interaction between metal and support, i.e. Pt0 particles encapsulated by TixOy, happens, which are the reasons for the deactivation of Pt0/TiO2 photocatalyst treated by high-temperature N2.  相似文献   

12.
La1−xAgxMnO3 perovskites with different doping Ag-content were prepared by the sol–gel method. The electromagnetic characteristics and microwave loss behavior of these ion-doped rare-earth manganites were studied in the 2–18 GHz frequency range. The microstructure and morphology of the samples were characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. The complex permittivity spectra, the complex permeability spectra and microwave reflection loss were measured by a microwave vector network analyzer system. The XRD patterns show that the crystalline perovskite main phase ABO3 is formed and impurity phases disappear when calcined at 1100 °C, and Ag metal as an impurity phase appears when excessive Ag+ is doped. The SEM image indicates that many of the La0.85Ag0.15MnO3 particles are fiber-like or ellipsoidal. Magnetic loss and dielectric loss coexist and cooperate in microwave attenuation by moderate substitution of Ag+ for La3+. The microwave absorption property of the La0.85Ag0.15MnO3 sample is enhanced with the bandwidth below −10 dB at about 6 GHz and the peak value of reflection loss is near −25.0 dB at the layer thickness of 2 mm.  相似文献   

13.
In the present study, various Pb[(Ni1/3Sb2/3)xTiyZrz]O3 where x+y+z=1, x=0.08 and y=0.44-0.49, ceramics in the morphotropic phase boundary (MPB) range were studied by dielectric and pyroelectric methods. The results of the investigations revealed an MPB composition range of y≅0.46. The study of the dielectric properties of these compounds as a function of temperature suggests that with increase in y the permittivity maximum increases and transition temperature shifts towards higher temperature. Well-saturated polarization versus electric field (P-E) hysteresis loops were obtained and values of Pr were calculated. The samples revealed good pyroelectric properties for y=0.44 and y=0.45 at room temperature with large figures of merit Fv=0.019 m2/C and FD=1.34×10-5Pa1/2.  相似文献   

14.
Gian A. Rizzi 《Surface science》2006,600(16):3345-3351
Stoichiometric and highly-defective TiO2(1 1 0) surfaces (called as yellow and blue, respectively) were exposed to Mo(CO)6 vapours in UHV and in a reactive O2 atmosphere. In the case of yellow-TiO2, an O2 reactive atmosphere was necessary to obtain the Mo(CO)6 decomposition at 450 °C with deposition of MoOx nanostructures where, according to core level photoemission data, the Mo+4 state is predominant. In the case of blue-TiO2 it was possible to obtain Mo deposition both in UHV and in an O2 atmosphere. A high dose of Mo(CO)6 in UHV on blue-TiO2 allowed the deposition of a thick metallic Mo layer. An air treatment of this sample at 580 °C led to the elimination of Mo as MoO3 and to the formation of a transformed layer of stoichiometry of Ti(1−x)MoxO2 (where x is close to 0.1) which, according to photoelectron diffraction data, can be described as a substitutional near-surface alloy, where Mo+4 ions are embedded into the titania lattice. This embedding procedure results in a stabilization of the Mo+4 ions, which are capable to survive to air exposure for a rather long period of time. After exposure of the blue-TiO2(1 1 0) substrate to Mo(CO)6 vapours at 450 °C in an O2 atmosphere it was possible to obtain a MoO2 epitaxial ultrathin layer, whose photoelectron diffraction data demonstrate that is pseudomorphic to the substrate.  相似文献   

15.
The glasses of the composition (40−x) PbO-15Bi2O3-45As2O3-xCoO, with 0≤x≤0.6 mol% in the steps of 0.1 were synthesized. The dielectric properties viz., dielectric constant, loss and ac conductivity over moderately larger ranges of frequency and temperature were investigated. The results were analyzed with the aid of the data on optical absorption and IR spectra. The analysis indicated that there is an increase in the insulating strength of the glasses with increase in the concentration of CoO up to 0.4 mol%.  相似文献   

16.
The (Pb0.90La0.10)Ti0.975O3/PbTiO3 (PLT/PT), PbTiO3/(Pb0.90La0.10)Ti0.975O3/PbTiO3 (PT/PLT/PT) multilayered thin films with a PbOx buffer layer were in situ deposited by RF magnetron sputtering at the substrate temperature of 600 °C. With this method, highly (1 0 0)-oriented PLT/PT and PT/PLT/PT multilayered thin films were obtained. The PbOx buffer layer leads to the (1 0 0) orientation of the films. The dielectric, ferroelectric and pyroelectric properties of the PLT multilayered thin films were investigated. It is found that highly (1 0 0)-oriented PT/PLT/PT multilayered thin films possess higher remnant polarization 2Pr (44.1 μC/cm2) and better pyroelectric coefficient at room temperature p (p = 2.425 × 10−8 C/cm2 K) than these of PLT and PLT/PT thin films. These results indicate that the design of the PT/PLT/PT multilayered thin films with a PbOx buffer layer should be an effective way to enhance the dielectric, ferroelectric and pyroelectric properties. The mechanism of the enhanced ferroelectric properties was also discussed.  相似文献   

17.
The secondary ion mass spectrum of silicon sputtered by high energy C60+ ions in sputter equilibrium is found to be dominated by Si clusters and we report the relative yields of Sim+ (1 ≤ m ≤ 15) and various SimCn+ clusters (1 ≤ m ≤ 11 for n = 1; 1 ≤ m ≤ 6 for n = 2; 1 ≤ m ≤ 4 for n = 3). The yields of Sim+ clusters up to Si7+ are significant (between 0.1 and 0.6 of the Si+ yield) with even numbered clusters Si4+ and Si6+ having the highest probability of formation. The abundances of cluster ions between Si8+ and Si11+ are still significant (>1% relative to Si+) but drop by a factor of ∼100 between Si11+ and Si13+. The probability of formation of clusters Si13+-Si15+ is approximately constant at ∼5 × 10−4 relative to Si+ and rising a little for Si15+, but clusters beyond Si15 are not detected (Sim≥16+/Si+ < 1 × 10−4). The probability of formation of Sim+ and SimCn+ clusters depends only very weakly on the C60+ primary ion energy between 13.5 keV and 37.5 keV. The behaviour of Sim+ and SimCn+ cluster ions was also investigated for impacts onto a fresh Si surface to study the effects that saturation of the surface with C60+ in reaching sputter equilibrium may have had on the measured abundances. By comparison, there are very minor amounts of pure Sim+ clusters produced during C60+ sputtering of silica (SiO2) and various silicate minerals. The abundances for clusters heavier than Si2+ are very small compared to the case where Si is the target.The data reported here suggest that Sim+ and SimCn+ cluster abundances may be consistent in a qualitative way with theoretical modelling by others which predicts each carbon atom to bind with 3-4 Si atoms in the sample. This experimental data may now be used to improve theoretical modelling.  相似文献   

18.
Neodymium doped bismuth layer structure ferroelectrics (BLSFs) ceramics CaBi4−xNdxTi4O15 (x=0, 0.25, 0.50, 0.75) were prepared by solid-state reaction method. X-ray diffraction pattern showed that single phase was formed when x=0-0.75. The refined lattice parameters showed that a (b) axes decrease at x=0.25 and increase with more Nd3+ dopant. The effects of Nd3+ doping on the dielectric and ferroelectric properties of CaBi4Ti4O15 ceramics are studied. Nd3+ dopant decreased the Curie temperature linearly, and the dielectric loss, tan δ, as well. The remnant polarization of Nd3+ doped CaBi4Ti4O15 ceramics was increased by 80% at x=0.25, while more Nd3+ dopant decreased the remnant polarization. CaBi3.75Nd0.25Ti4O15 ceramics had the largest piezoelectric constant d33. The structure and properties of CaBi4−xNdxTi4O15 ceramics showed that Nd3+ may occupy different crystal locations when Nd3+ content x is less than 0.25 and more than 0.50.  相似文献   

19.
Multiferroic Bi0.95Sm0.05Fe1−xCoxO3 (x=0−0.1) ceramics were prepared by the rapid liquid phase sintering method. For all the samples studied, the dielectric constant and dielectric loss decrease with increasing frequency in the range from 1 kHz to 1 MHz. It shows that the dielectric constant of Bi0.95Sm0.05FeO3 at 10 kHz is about forty times larger than that of pure BiFeO3. This dramatic change in the dielectric properties of Bi0.95Sm0.05Fe1−xCoxO3 (x=0−0.1) samples can be understood in terms of the space charge limited conduction associated with crystal defects, which was indicated by the increase of magnetoelectric effect with doping Co3+ under applied magnetic field from 1 to 8 kOe. It was believed that the ferroelectric polarization enhancement comes from the exchange interaction between the Sm3+ and Fe3+ or Co3+ ions for Bi0.95Sm0.05Fe0.95Co0.05O3 at room temperature.  相似文献   

20.
Four manganite samples of the series, (La1/3Sm2/3)2/3SrxBa0.33−xMnO3, with x=0.0, 0.1, 0.2 and 0.33, were investigated by X-band (∼9.5 GHz) electron paramagnetic resonance (EPR) in the temperature range 4-300 K. The temperature dependences of EPR lines and linewidths of the samples with x=0.0, 0.1 and 0.2, containing Ba2+ ions, exhibit similar behavior, all characterized by the transition temperatures (TC) to ferromagnetic states in the 110-150 K range. However, the sample with x=0.33 (containing no Ba2+ ions) is characterized by a much higher TC=205 K. This is due to significant structural changes effected by the substitution of Ba2+ ions by Sr2+ ions. There is an evidence of exchange narrowing of EPR lines near Tmin, where the linewidth exhibits the minimum. Further, a correlation between the temperature dependence of the EPR linewidth and conductivity is observed in all samples, ascribed to the influence of small-polaron hopping conductivity in the paramagnetic state. The peak-to-peak EPR linewidth was fitted to ΔBpp(T)=ΔBpp,min+A/Texp(−Ea/kBT), with Ea=0.09 eV for x=0.0, 0.1 and 0.2 and Ea=0.25 eV for x=0.33. From the published resistivity data, fitted here to σ(T)∝1/T exp(−Eσ/kBT), the value of Eσ, the activation energy, was found to be Eσ=0.18 eV for samples with x=0.0, 0.1 and 0.2 and Eσ=0.25 eV for the sample with x=0.33. The differences in the values of Ea and Eσ in the samples with x= 0.0, 0.1and 0.2 and x=0.33 has been ascribed to the differences in the flip-flop and spin-hopping rates. The presence of Griffiths phase for the samples with x=0.1 and 0.2 is indicated; it is characterized by coexistence of ferromagnetic nanostructures (ferrons) and paramagnetic phase, attributed to electronic phase separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号