首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated CoNiFe and CoNiFe–C electrodeposited by pulse reverse plating (PRP) and direct current (DC) techniques. CoNiFe(PRP) films with composition Co59.4Fe27.7Ni12.8 show coercivity of 95 A m−1 (1.2 Oe) and magnetization saturation flux (μ0Ms) of 1.8 T. Resistivity of CoNiFe (PRP) is about 24 μΩ cm and permeability remains almost constant μr′ ∼475 up to 30 MHz with a quality factor (Q) larger than 10. Additionally, the permeability spectra analysis shows that CoNiFe exhibits a classical eddy current loss at zero bias field and ferromagnetic resonance (FMR) when biased with 0.05 T. Furthermore, a crossover between eddy current and FMR loss is observed for CoNiFe-PRP when baised with 0.05 T. DC and PRP plated CoNiFe–C, which have resistivity and permeability of 85, 38 μΩ cm, μr′=165 and 35 with Q>10 up to 320 MHz, respectively, showed only ferromagnetic resonance losses. The ferromagnetic resonance peaks in CoNiFe and CoNiFe–C are broad and resembles a Gaussian distribution of FMR frequencies. The incorporation of C to CoNiFe reduces eddy current loss, but also reduces the FMR frequency.  相似文献   

2.
Effect of annealing on the soft magnetic properties of Fe73.5Si13.5B9Nb3Au1 amorphous ribbon has been investigated by means of structure examination, magnetoimpedance ratio (MIR) and incremental permeability ratio (PR) spectra measured in the frequency range of 1–10 MHz at a fixed current of 10 mA X-ray diffraction analysis showed that the as-cast sample was amorphous and it became nanocrystalline under a proper heat treatment. When annealing amorphous alloy at 530 °C for 30, 60, 90 min, soft magnetic properties have been improved drastically. Among the samples investigated, the sample annealed at 530 °C for 90 min showed the softest magnetic behavior. The MIR and PR curves revealed the desirable changes in anisotropy field depending upon annealing.  相似文献   

3.
The adhesion of Cu on Ru substrates with different crystal orientations was evaluated. The crystal orientation of sputter deposited Ru could be changed from (1 0 0) to (0 0 1) by annealing at 650 °C for 20 min. The adhesion of Cu was evaluated by the degree of Cu agglomeration on Ru. Cu films on annealed Ru films with the (0 0 1) crystal orientation showed 28% lower RMS values and 50% lower Ru surface coverage than Cu as-deposited on Ru having the (1 0 0) crystal orientation after annealing at 550 °C for 30 min, which suggest that Cu wettability on the Ru(0 0 1) was better than that on the Ru(1 0 0) plane. The low lattice misfit of 4% between Cu(1 1 1) and Ru(0 0 1) may be the reason for this good adhesion property.  相似文献   

4.
FePt:Ag nanocomposite films were prepared by pulsed filtered vacuum arc deposition system and subsequent rapid thermal annealing on SiO2/Si(1 0 0) substrates. The microstructure and magnetic properties were investigated. A strong dependence of coercivity and ordering of the face-central tetragonal structure on both Ag concentration and annealing temperature was observed. With Ag concentration of 22% in atomic ratio, the coercivity got to 6.0 kOe with a grain size of 6.7 nm when annealing temperature was 400 °C.  相似文献   

5.
The influence of isothermal annealing (1 h at 600 °C in Ar atmosphere) on the soft magnetic properties and magnetoimpedance (MI) effect has been studied in ribbons of the following Nanoperm alloys: Fe91Zr7B2, Fe88Zr8B4, Fe87Zr6B6Cu1 and Fe80Zr10B10. A maximum MI ratio of about 27% was measured for the nanocrystalline alloy Fe87Zr6B6Cu1 at a driving frequency of 0.2 MHz. The thermal annealing led to magnetic softening for this alloy, while a hardening is observed for the Fe80Zr10B10 alloy.  相似文献   

6.
The infrared (IR) photoluminescence (PL) emission of spark-processed silicon (sp-Si) was investigated. A broad and strong room temperature PL peak in the 945 nm (1.31 eV) spectral range was observed when sp-Si was excited with an argon laser. This peak is different from the PL commonly reported for anodically etched porous silicon and other silicon-based materials. The PL intensity increases substantially after annealing sp-Si between 350 and 500 °C in air after which it decreases again. The PL wavelength is observed to peak at 1010 nm by annealing sp-Si near 450 °C. It was further found that the most efficient PL occurs for a Si/O ratio of 0.3, for a small spark gap of about 1 mm, and for spark-processing times in the 15-60 min range.A model for the IR PL is proposed which mirrors that for visible PL. Specifically, it is proposed that the electrons which have been pumped by the laser from the ground state into a broad quasi-absorption band (or closely spaced absorption lines between 1.7 and 2.3 eV) revert back to lower IR levels at 1.31 eV by a non-radiative transition from where they revert radiatively to the ground state by emitting the observed 945 nm light.  相似文献   

7.
Antimony-doped tin oxide (SnO2:Sb) single crystalline films have been prepared on α-Al2O3 (0 0 0 1) substrates by metal organic chemical vapor deposition (MOCVD). The antimony doping was varied from 2% to 7% (atomic ratio). Post-deposition annealing of the SnO2:Sb films was carried out at 700-1100 °C for 30 min in atmosphere ambient. The effect of annealing on the structural, electrical and optical properties of the films was investigated in detail. All the SnO2:Sb films had good thermal stability under 900 °C, and the 5% Sb-doped SnO2 film exhibited the best opto-electrical properties. Annealed above 900 °C, the 7% Sb-doped SnO2 film still kept high thermal stability and showed good electrical and optical properties even at 1100 °C.  相似文献   

8.
In this study, the effects of thermal annealing temperature and duration on ZnO nanorod arrays fabricated by hydrothermal method were investigated. The annealed ZnO/Si(1 1 1) substrate was used for ZnO nanorod array growth. The effects of annealing treatment on the structural and optical properties were investigated by scanning electron microscopy, X-ray diffraction, and room-temperature photoluminescence measurements. With the annealing temperature of 750 °C and the annealing duration of 10 min, both the structural and optical properties of the ZnO nanorod arrays improved significantly, as indicated in the X-ray diffraction and photoluminescence measurement.  相似文献   

9.
We report a systematic study of the influence of Nb substitution for Fe on the magnetic properties and magneto-impedance (MI) effect in amorphous and annealed Fe76.5−xSi13.5B9Cu1Nbx (x=0, 1, 2, 3, 4, 5, 6, and 7) ribbons. The amorphous ribbons were annealed at different temperatures ranging from 530 to 560 °C in vacuum for different annealing times between 5 and 20 min. We have found that for the as-quenched amorphous ribbons, the substitution of Nb for Fe first increases the saturation magnetization (Ms) and decreases the coercivity (Hc) until x=3, for which the largest Ms∼152 emu/g and the smallest Hc∼1.3 Oe are obtained, then an opposite trend is found for x>3. The largest MI ratio (ΔZ/Z∼38% at f=6 MHz) is achieved in the amorphous ribbon with x=3. A similar trend has been observed for the annealed ribbons. The most desirable magnetic properties (Ms∼156 emu/g and Hc∼1.8 Oe) and the largest MI ratio (ΔZ/Z∼221% at f=6 MHz) are achieved for the x=3 sample annealed at 540 °C for 15 min. A correlation between the microstructure, magnetic properties, and MI effect in the annealed ribbons has been established.  相似文献   

10.
Magnetoimpedance (MI) effect of cobalt-coated silicon steels is measured as a function of cobalt thickness (0−45 μm), DC magnetic field (0-2 kOe), frequency (1 kHz-1 MHz) and magnitude (1-20 mA) of AC current. With increase in deposition thickness, the MI ratio and the characteristic frequency are decreased because the samples are magnetically hardened by the coating. Nevertheless, cobalt deposition broadens the frequency-dependent MI curves, and the frequency range with a large MI ratio is extended. The variations of this peak width as well as the characteristic frequency and the MI ratio are explained by the skin effect and crossing effect.  相似文献   

11.
We studied processes of cleaning GaN(0 0 0 1) surfaces on four different types of wafers: two types were hydride vapor phase epitaxy (HVPE) free-standing substrates and two types were metal-organic chemical vapor deposition (MOCVD) films grown on these HVPE substrates and prepared by annealing and/or Ar ion sputtering in ultra high vacuum. We observed the surfaces through treatments using in situ low-energy electron diffraction (LEED), reflection high-energy electron diffraction (RHEED), scanning tunneling microscopy (STM), and Auger electron spectroscopy, and also using ex situ temperature programmed desorption, X-ray photoelectron spectroscopy, X-ray diffraction, and secondary ion mass spectrometry. For HVPE samples, we obtained relatively clean surfaces under optimized three-step annealing conditions (200 °C for 12 h + 400 °C for 1 h + 500 °C for 5 min) without sputtering, after which the surface contamination of oxide and carbide was reduced to ∼20% of that before annealing. Clear GaN(0 0 0 1)1×1 patterns were obtained by LEED and RHEED. STM images showed flat terraces of ∼10 nm size and steps of ∼0.5 nm height. Upon annealing the HVPE-GaN samples at a much higher temperature (C), three-dimensional (3D) islands with facets were formed and the surface stoichiometry was broken down with the desorption of nitrogen in the form of ammonia, since the samples include hydrogen as an impurity. Ar+ sputtering was effective for removing surface contamination, however, postannealing could not recover the surface roughness but promoted the formation of 3D islands on the surface. For MOCVD/HVPE homoepitaxial samples, the surfaces are terminated by hydrogen and the as-introduced samples showed a clear 1×1 structure. Upon annealing at 500-600 °C, the surface hydrogen was removed and a 3×3 reconstruction structure partially appeared, although a 1×1 structure was dominant. We summarize the structure differences among the samples under the same treatment and clarify the effect of crystal quality, such as dislocations, the concentration of hydrogen impurities, and the residual reactant molecules in GaN films, on the surface structure.  相似文献   

12.
This work presents the structural characterization of nanoclusters formed from a-Si:H/Ge heterostructures processed by rapid thermal annealing (RTA) at 1000 °C for annealing times varying between 30 s and 70 s. The a-Si:H layers were grown on electron cyclotron resonance (ECR) using SiH4 and Ar precursor gases. The Ge layer was grown in an e-beam evaporation system. The structural characterizations were performed by high-resolution X-ray diffractometer (HRXRD) on grazing incidence X-ray reflection mode (GIXRR) and micro-Raman measurements. The average grain size, Ge concentration (xGe) and strain were estimated from Lorentzian GIXRR peak fit. The average grain size varied from 3 nm to 7.5 nm and decreased with annealing time. The xGe increase with annealing time and varied from 8% to 19%, approximately. The strain calculated for (1 1 1), (2 2 0) and (3 1 1) peaks at 40 s, 50 s, 60 s and 70 s annealing time suggest the geometrical changes in nanoclusters according to process time.  相似文献   

13.
Both single-barrier magnetic tunnel junctions (SBMTJs) and double-barrier magnetic tunnel junctions (DBMTJs) with an amorphous hardcore structure of Co60Fe20B20/Al–O/Co60Fe20B20 were microfabricated. A high TMR ratio of 102.2% at 4.2 K was observed in the SBMTJs after annealing at 265 °C for 1 h. High TMR ratio of 56.2%, low junction resistance-area product RS of 4.6 kΩ μm2, small coercivity HC=25 Oe, and relatively large bias-voltage-at-half-maximum TMR with the value V1/2 greater than 500 mV at room temperature (RT) had been achieved in such Co–Fe–B SBMTJs. Whereas, high TMR ratio of 60% at RT and 89% at 30 K, low junction resistance-area product RS of 7.8 kΩ μm2 at RT and 8.3 kΩ μm2 at 30 K, low coercivity HC=8.5 Oe at RT and HC=14 Oe at 30 K, and relatively large bias-voltage-at-half-maximum TMR with the value V1/2 greater than 1150 mV at RT had been achieved in the Co–Fe–B DBMTJs. Temperature dependence of the TMR ratio, resistance, and coercivity from 4.2 K to RT, and applied voltage dependence of the TMR ratio and resistance at RT for such amorphous MTJs were also investigated.  相似文献   

14.
A Li hexagonal boron nitride (hBN) intercalation compound (Li-hBNIC) was successfully synthesized by the annealing of powder or bulk hBN and Li at 1523 K. By an XRD analysis, a strong peak indicating the expansion of BN interlayer distance due to Li-intercalation was observed at an angle lower than that of hBN (0 0 2). In the sample, the interlayer distance and its expansion ratio were 3.76 Å and 12.6%, respectively, and these values were similar to those of a first stage Li-graphite intercalation compound (Li-GIC), LiC6. The electrical conductivity of the sample was increased by several orders of magnitude, from 10−15 to 10−7 Ω−1 cm−1 at room temperature. Li de-intercalation was confirmed by the dispersion of the sample in purified water.  相似文献   

15.
Magnetoimpedance (MI) in Co68Fe4Zr10Cu2B16 alloy has been investigated in the frequency range 500 kHz–5 MHz and with the application of external steady magnetic field in the longitudinal direction, up to 100 Oe. MI measurements were carried out on as-cast ribbons and also on conventionally annealed and Joule-annealed ribbons. In as cast ribbons, the maximum MI observed is 13% at a frequency of 500 kHz and it decreases to 5% and 4% with conventional annealing at 100 °C and 150 °C, respectively. On the other hand, MI decreases to 8% and 6% with Joule annealing employing currents of 100 mA and 200 mA, respectively. However, Joule annealing with the application of a magnetic field of 5–10 Oe in the transverse direction causes the MI to decrease to 12% and 11% for currents of 100 mA and 200 mA, respectively. In the as-cast ribbons, double peak behavior is observed in all the frequencies whereas, in the annealed ribbons, double peak behavior in general is observed only at high frequencies.  相似文献   

16.
A comparative analysis of the properties of the non-passivated and S-passivated GaSb(1 0 0) surfaces has been performed through PL, AFM and RHEED characterization. The samples treated with a 1 M Na2S aqueous solution demonstrate an increase in the 5 K PL intensity. According to AFM data, the annealing of the S-passivated GaSb(1 0 0) leads to the formation of the clean flat (1 0 0) surface. Moreover, after annealing the PL intensity of the S-passivated GaSb(1 0 0) surfaces decreases by 20%, whereas for the non-passivated samples it drops by more than a factor of 4. The method of wet sulfur passivation has shown great effectiveness in pre-epitaxial processing for LPE and MBE growth of the GaSb-related materials for optoelectronics.  相似文献   

17.
Ag-N doped ZnO film was synthesized by ion beam assisted deposition and its electrical properties and annealing property were investigated. The films remained p-type even after annealing at 400 °C in air for 10 min. While the annealing temperature went up to 500 °C, the conduction type of these films shifted from p-type to n-type. The p-type ZnO film revealed low resistivity (0.0016 Ω cm), low Hall mobility (0.65 cm2 V−1 s−1) and high carrier concentration (5.8 × 1020 cm−3). ZnO p-n homojunction consisting of a p-type layer (Ag-N doped ZnO film) and an n-type layer (In-doped ZnO film) had been fabricated by ion beam assisted deposition. With electrical measurement, its current-voltage curve had a typical rectifying characteristic with current rectification ratio of 25 at bias ±5 V and a reverse current of 0.01 mA at −5 V. The depletion width was estimated 3.8 nm by using p-n junction equation.  相似文献   

18.
In this work, 0.30 μm thick LiNbO3 layers have been deposited by sputtering on nanocrystalline diamond/Si and platinised Si substrates. The films were then analyzed in terms of their structural and optical properties. Crystalline orientations along the (0 1 2), (1 0 4) and (1 1 0) axes have been detected after thermal treatment at 500 °C in air. The films were near-stoichiometric and did not reveal strong losses or diffusion in lithium during deposition or after thermal annealing. Pronounced decrease of the roughness on top of the LiNbO3 layer and at the interface between LiNbO3 and diamond was also observed after annealing, compared to the bare nanocrystalline diamond on Si substrate. Furthermore, ellipsometry analysis showed a better density and a reduced thickness of the surface layer after post-deposition annealing. The dielectric constant and losses have been measured to 50 and less than 3.5%, respectively, for metal/insulator/metal structures with 0.30 μm thick LiNbO3 layer. The piezoelectric coefficient d33 was found to be 7.1 pm/V. Finally, we succeeded in switching local domain under various positive and negative voltages.  相似文献   

19.
Granular C/Co/C films have been prepared by magnetron sputtering from C and Co onto glass substrates at room temperature and subsequent in situ annealing. It has been found that the structure and magnetic properties of the C/Co/C films depend strongly on the Co layer thickness. Vibrating sample magnetometer measurements indicate that the in-plane coercivities reach maximum in 20 nm Co thickness of both as-deposited and annealed films. The squareness ratio of annealed films was more than 0.8. X-ray diffraction shows that majority Co nanograins are formed as the hexagonal-close-packed (HCP) structure in 20 nm Co thickness with annealing at 400 °C. Scanning probe microscope was used to scan surface morphology and magnetic domain structures. The values of the surface roughness were lower than 0.6 nm in all annealed samples. The average magnetic cluster size was estimated to be about 10 nm in annealed 20 nm Co thickness films.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号