首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The possibilities of graphic STM image simulation of a clean Si(1 1 1) 7 × 7 surface at atomic level are indicated. The presented procedure takes into account various types of deformation on the surface near the Fermi level in order to classify them and explain their origin. It also gives a clear hint to insert relevant physical phenomena in a suggested analysis. This goal is achieved exploiting the results of DAS (dimmer adatom stacing fault) model by means of standard mathematical programmes. A clean Si(1 1 1) 7 × 7 surface is considered as the representative example, but similar evaluation is possible for another non-metal and metal surfaces.  相似文献   

2.
E. Vasco 《Surface science》2005,575(3):247-259
The surface relaxation mechanisms governing the preferential adsorption of metal atoms onto the faulted half-cells of a 7 × 7 reconstructed Si(1 1 1) surface are studied by rate equations and kinetic Monte Carlo simulations. The versatility of these mechanisms to control the formation of quasi-perfect 2D arrays of metal clusters is revealed via the optimization of the deposition/annealing conditions as a function of operating mechanisms, the Si(1 1 1)7 × 7 energy landscape, and the thermal stability of the created clusters. The influence on the formation process of such nanoarrays of the balance between kinetic limitations, which are especially relevant on Si(1 1 1)7 × 7, and thermodynamic tendencies is discussed.  相似文献   

3.
Using scanning tunneling microscopy (STM) and time of flight secondary ion mass spectrometry (TOF/SIMS), we observed radiation effects on a Si(1 1 1)-(7 × 7) surface in the collision of a single highly charged ion (HCI) with a charge state q up to q = 50. The STM observation with atomic resolution revealed that a nanometer sized crater-like structure was created by a single HCI impact, where the size increased rapidly with q. The secondary ion yields also increased with q in which multiply charged Si ions (Sin+) were clearly observed in higher q HCI-collisions. The sputtering mechanism is briefly discussed, based on the so-called Coulomb explosion model.  相似文献   

4.
The adsorption of NH3 molecule on the Si(1 1 1)-7 × 7 surface modelled with a cluster has been studied using density functional theory (DFT). The results indicate the existence of a precursor state for the non-dissociative chemisorption. The active site for the molecular chemisorption is the adatom; while the NH3 molecule adsorbs on the Si restatom via this preadsorbed state, the adsorption on the Si adatom is produced practically without an energy barrier. The ammonia adsorption on the adatom induces an electron transfer from the dangling bond of this atom to the dangling bond of the adjacent Si restatom, hindering this site for the adsorption of a second NH3 incoming molecule. However, this second molecule links strongly by means of two H-bonds. The dissociative chemisorption process was studied considering one and two ammonia molecules. For the dissociation of a lonely NH3 molecule an energy barrier of ∼0.3 eV was calculated, yielding NH2 on the adatom and H on the restatom. When two molecules are adsorbed, the NH3-NH3 interaction yields the weakening of a N-H bond of the ammonia molecule adsorbed closer the Si surface. As a consequence, the dissociation barrier practically disappears. Thus, the presence of a second NH3 molecule at the adatom-restatom pair of the Si(1 1 1)-7 × 7 surface makes the dissociative reaction self-assisted, the total adsorption process elapsing with a negligible activation barrier (less than 0.01 eV).  相似文献   

5.
Chemisorption of 1,1-dichloroethene (Cl2CCH2) to a Si(1 1 1)-7 × 7 surface was studied by means of X-ray photoelectron spectroscopy using synchrotron radiation, recording chlorine 2p and carbon 1s spectra. For carbon 1s, spectral assignment of the chemisorbed species is based on quantum chemical calculations of chemical shifts in model compounds.The results confirm the identity of covalently bonded 1-chlorovinyl (-CClCH2) and vinylidene (CCH2) adspecies. Upon chemisorption at room temperature it was found that about one-third of the molecules break one C-Cl bond while about two-thirds of the adsorbates break two C-Cl bonds. We do not, however, find evidence for isomerization of CCH2 to di-bonded vinylene (-CHCH-).  相似文献   

6.
Li adsorption at extremely low coverages on the “metallic” Si(1 1 1)-(7 × 7) surface has been experimentally studied recently by β-NMR experiments. Instead of increasing linearly with the sample temperature, as expected for a metallic system, the relaxation rate α = 1/T1 is almost constant in between 50 K and 300 K sample temperature and rises Arrhenius like above. In order to understand this behaviour in a transparent way a closed form analysis is presented using rectangular density of states distributions. The almost temperature independent relaxation rate below 300 K points to an extremely localized and thus narrow band (width about 10 meV) which pins the Fermi energy. Because of the steeply rising relaxation rate beyond 300 K it is located energetically within a gap (about 380 meV wide) in between a lower filled and an upper empty (Hubbard) band. In dynamical mean field theories based on Hubbard Hamiltonians this kind of density of states is typical for correlated electron systems close to a Mott-Hubbard metal-insulator transition.  相似文献   

7.
The intramolecular features of carbon 60 and carbon 84 molecules on Si(1 1 1)-7 × 7 surfaces were studied under a UHV-scanning tunneling microscope. Carbon molecules preferentially appear in faulted halves, rather than in unfaulted halves and corner holes; they are embedded in silicon substrates. The orientation and details of the structure of carbon molecules are determined by applying various sample biases to the silicon substrate. As compared with other fullerenes, a bright pentagonal ring with nebulous clusters which represents the cage structure is clearly observed on top of carbon 60 molecules. The bright stripes associated with partitioned curves which depict eight features of asymmetrical C84 molecules are also investigated on Si(1 1 1)-7 × 7 surfaces. The orientations and possible configurations of C60 and C84 are considered in this work. The energy differences for various features of C60 and C84 molecules are estimated and discussed. The corresponding models with respect to each intramolecular feature are proposed and compared with recent theoretical calculation.  相似文献   

8.
The growth of Pb films on the Si(1 0 0)-2 × 1 surface has been investigated at low temperature using scanning tunneling microscopy. Although the orientation of the substrate is (1 0 0), flat-top Pb islands with (1 1 1) surface can be observed. The island thickness is confined within four to nine atomic layers at low coverage. Among these islands, those with a thickness of six layers are most abundant. Quantum-well states in Pb(1 1 1) islands of different thickness are acquired by scanning tunneling spectroscopy. They are found to be identical to those taken on the Pb(1 1 1) islands grown on the Si(1 1 1)7 × 7 surface. Besides Pb(1 1 1) islands, two additional types of Pb islands are formed: rectangular flat-top Pb(1 0 0) islands and rectangular three-dimensional (3D) Pb islands, and both their orientations rotate by 90° from a terrace to the adjacent one. This phenomenon implies that the structures of Pb(1 0 0) and 3D islands are influenced by the Si(1 0 0)-2 × 1 substrate.  相似文献   

9.
The surface structure of Si(1 1 1)-6 × 1-Ag was investigated using surface X-ray diffraction techniques. By analyzing the CTR scattering intensities along 00 rod, the positions of the Ag and reconstructed Si atoms perpendicular to the surface were determined. The results agreed well with the HCC model proposed for a 3 × 1 structure induced by alkali-metals on a Si(1 1 1) substrate. The heights of the surface Ag and Si atoms did not move when the surface structure changed from Si(1 1 1)-√3 × √3-Ag to Si(1 1 1)-6 × 1-Ag by the desorption of the Ag atoms. From the GIXD measurement, the in-plane arrangement of the surface Ag atoms was determined. The results indicate that the Ag atoms move large distances at the phase transition between the 6 × 1 and 3 × 1 structures.  相似文献   

10.
Metal atom on the Si(1 1 1)-7 × 7 surface undergoes migration by hopping among Si-adatom and Si-rest atom. If the hopping migration is prohibited, how change the deposited metals? In this paper, we studied the deposition of metals on the Si(1 1 1)-7 × 7 surface saturated with C2H5OH, on which the whole Si-rest atoms are changed to Si-H so that the hoping migration of metals will be prohibited. We found the growth of ca. 5 nm of crystalline dots by the deposition of Sn, Zn and Ag. Interestingly, Ag dots undergo layer-by-layer growth so that the surface is covered with 5 nm size dots with uniform height. When the hopping migration is prohibited, growth of dots is controlled by the kinetics of precursor state atoms instead of the lattice energy relating to lattice matching or strain.  相似文献   

11.
Monolayer Ga adsorption on Si surfaces has been studied with the aim of forming p-delta doped nanostructures. Ga surface phases on Si can be nitrided by N2+ ion bombardment to form GaN nanostructures with exotic electron confinement properties for novel optoelectronic devices. In this study, we report the adsorption of Ga in the submonolayer regime on 7 × 7 reconstructed Si(1 1 1) surface at room temperature, under controlled ultrahigh vacuum conditions. We use in-situ Auger electron spectroscopy, electron energy loss spectroscopy and low energy electron diffraction to monitor the growth and determine the properties. We observe that Ga grows in the Stranski-Krastanov growth mode, where islands begin to form on two flat monolayers. The variation in the dangling bond density is observed during the interface evolution by monitoring the Si (LVV) line shape. The Ga adsorbed system is subjected to thermal annealing and the residual thermal desorption studied. The difference in the adsorption kinetics and desorption dynamics on the surface morphology is explained in terms of strain relaxation routes and bonding configurations. Due to the presence of an energetic hierarchy of residence sites of adatoms, site we also plot a 2D phase diagram consisting of several surface phases. Our EELS results show that the electronic properties of the surface phases are unique to their respective structural arrangement.  相似文献   

12.
We have performed total-energy calculations to study theoretical scanning tunneling microscopy (STM) images of the Si(1 1 1)3 × 2 surfaces induced by the adsorption of alkaline-earth metals (AEMs). Previously, in a series of works on Ba/Si(1 1 1) system, we have found that the observed Si(1 1 1)3 × 1-Ba LEED phase indeed has a 3 × 2 periodicity with a Ba coverage of 1/6 ML and the HCC substrate structure. Based on results of the Ba case, we proposed that the HCC structure is also adopted for other AEM atoms, which was confirmed by our recent work. In this paper, we mainly report the STM simulations for different AEM systems to compare with existing experimental data. We discuss the difference in the detailed STM images for different AEM adsorbates. Especially, the difference in filled-state images between Mg and other AEM atoms is attributed to the strong Mg-Si interaction.  相似文献   

13.
Zhenhua He 《Surface science》2006,600(3):514-526
The room-temperature adsorption and thermal evolution of iso-, cis- and trans-dichloroethylene (DCE) on Si(1 1 1)7 × 7 have been studied by vibrational electron energy loss spectroscopy and thermal desorption spectrometry (TDS). The presence of the Si-Cl stretch at 510 cm−1 suggests that, upon adsorption, all three isomers dissociate via C-Cl bond breakage on the 7 × 7 surface to form mono-σ bonded chlorovinyl , which could, in the case of iso-DCE, further dechlorinate to vinylidene (:CCH2) upon insertion into the back-bond. The higher saturation exposure for the Si-Cl stretch at 510 cm−1 observed for cis- and trans-DCE than iso-DCE suggests that Cl dissociation via the CHCl group in the cis and trans isomers is less readily than the CCl2 group in iso-DCE. Our TDS data show remarkable similarities in both molecular desorption near 360 K and thermal evolution of the respective adstructures for all three isomers on Si(1 1 1)7 × 7. In particular, upon annealing to 450 K, the mono-σ bonded chlorovinyl adspecies is found to further dechlorinate to either vinylene di-σ bonded to the Si surface or acetylene to be released from the surface. Above 580 K, vinylene could also become gaseous acetylene or undergo H abstraction to produce hydrocarbon or SiC fragments. All three DCE isomers also exhibit TDS features attributable to an etching product SiCl2 at 800-950 K and recombinative desorption products HCl at 700-900 K and H2 at 650-820 K. The stronger Cl-derived TDS signals and Si-Cl stretch at 510 cm−1 over 450-820 K for trans-DCE than those for cis-DCE indicate stronger dechlorination for trans-DCE than cis-DCE, which could be due to less steric hindrance resulting from the formation of the chlorovinyl adspecies for trans-DCE during the initial adsorption/dechlorination process. Finally, our density functional calculations qualitatively support the thermodynamic feasibility and relative stabilities of the proposed adstructures involving chlorovinyl, vinylidene, and vinylene adspecies.  相似文献   

14.
The bonding and growth mechanism of photochemically attached olefin molecules to (1 0 0)(2 × 1):H diamond is characterized using atomic force (AFM) and scanning tunneling microscopy (STM) experiments in combination with molecular orbital calculations. To identify growth schemas, diamond surfaces after 10, 40 and 90 min of photo-chemically stimulated growth have been characterized. These data show clearly island formation which is discussed taking into account a growth model from silicon. The island growth shows no directional properties which are attributed to arrangement and geometrical properties of hydrogen terminated carbon bonds at the surface of (1 0 0) oriented (2 × 1) reconstructed diamond.  相似文献   

15.
Ab initio calculations of the reflectance anisotropy of Si(1 1 1)-In surfaces are presented. A very pronounced optical anisotropy around 2 eV is found that is related to In-chain states. The distortion of the indium chains characteristic for the (4 × 1) → (8 × 2) phase transition results in a splitting of the 2 eV peak, as observed experimentally. The splitting occurs irrespective wether the phase transition occurs according to the trimer or hexamer model.  相似文献   

16.
We have performed density-functional theory (DFT) calculations to investigate the adsorption structures of methanol on a Ge(1 0 0) surface. Among many possible adsorption configurations, the most favorable configurations at room temperature were found to be those in which the OH-dissociated methanol molecule forms O-Ge bonds, with the methoxy group either parallel or perpendicular to the Ge surface. The spatial arrangement of methoxy group relative to the Ge(1 0 0) surface is not critical. The dissociated H is bonded to an adjacent up-Ge atom, passivating the dangling bond. The possibility of H diffusion to other Ge atoms is also investigated. The corresponding simulated images explain well the adsorption features observed experimentally. The reaction pathways explain the feasibility of OH-dissociative structures at room temperature. The two OH-dissociative configurations where methoxy groups are either parallel or perpendicular to Ge surfaces are similar in thermodynamic and kinetic aspects.  相似文献   

17.
Results for deposition and thermal annealing of gallium on the Si(1 0 0)-(2 × 1) surface achieved by synchrotron radiation photoelectron spectroscopy (SR-PES) and low energy electron diffraction (LEED) are presented. In addition to deposition of Ga on a clean surface, the influence of water adsorption on the arrangement of gallium atoms was also studied. The results on Ga deposition at a higher temperature (490 °C) are consistent with a Ga ad-dimer model showing equivalent bond arrangement of all Ga atoms for coverages up to 0.5 ML. The deposition onto a surface with adsorbed water at room temperature led to a disordered gallium growth. In this case gallium atoms bind to silicon dimers already binding fragments of adsorbed water. A subsequent annealing of these layers leads to a surface structure similar to the Ga-(2 × 2), however, it is less ordered, probably due to the presence of silicon oxides formed from water fragments.  相似文献   

18.
The desorption of Br adatoms from Br-saturated Si(1 0 0)-(2 × 1) was studied with scanning tunneling microscopy as a function of dopant type, dopant concentration, and temperature for 620-775 K. Analysis yields the activation energies and prefactors for desorption, and the former correspond to the energy separation between the Fermi level and Si-Br antibonding states. Thus, electron capture in long-lived states results in Br expulsion via a Franck-Condon transition. Analysis of the prefactors reveals that optical phonons provide the energy needed for the electronic excitation. These results show that desorption induced by an electronic transition can occur in closed system without external stimulus, and they indicate that thermally-excited charge carriers may play a general role in surface reactions.  相似文献   

19.
This study investigated the dynamics of copper atoms adsorbed on Si(1 1 1)-7 × 7 surfaces between 300 K and 623 K using a variable-temperature scanning tunneling microscope (STM). The diffusion behavior of copper clusters containing up to ∼6 atoms into a particular half unit cell of the 7 × 7 reconstructed Si(1 1 1) surface was considered. The movements and the formation of copper clusters were tracked in detail. The activation energies and pre-exponential factors for various diffusion paths were estimated. Finally, the Cu-etching-Si process and the quasi-5 × 5 incommensurated phase of Cu/Si islands were discussed.  相似文献   

20.
The characteristic energy band values such as the Fermi-level position with respect to valence band top for a boron-doped p-type hydrogen-terminated chemical-vapor-deposition (CVD) diamond (0 0 1)2 × 1 surface and for a clean CVD diamond (0 0 1)2 × 1 surface have been determined by a new method with an accuracy of ±0.02 eV. The electron attenuation length for the clean diamond (0 0 1)2 × 1 surface for the electron kinetic energy of C 1s X-ray photoemission peak by Mg Kα excitation is experimentally determined to be 2.1-2.2 nm. These values are compared and discussed with the previously reported experimental and simulation values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号