首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results of a theoretical study on the stability of fcc (1 1 1) metal surfaces to certain commensurate-incommensurate reconstructive phase transformations is presented. Specifically, we have performed computer simulation studies of the 22×√3 surface reconstruction of Au(1 1 1). This reconstruction involves a uniaxial contraction of the top monolayer corresponding to a surface strain of about 4.3% and has been observed to be the stable structure for the clean surface at low temperatures. The driving force for the reconstruction has been associated with the quantity (fγ), where f is the surface stress and γ is the surface free energy, while the opposing force is due to the disregistry with the underlying lattice. A continuum model yields a stability criterion that depends on the knowledge of a small number of physical quantities: f, γ, the equilibrium nearest-neighbor spacing r1 and the shear modulus G. We have performed molecular dynamics simulations as a general stability analysis of these types of reconstructions. The results are in excellent agreement with the continuum model. The simulations using embedded-atom method potentials also accurately reproduce many observed features of the reconstruction on Au(1 1 1).  相似文献   

2.
The adsorption of CO on Au(3 1 0) and Au(3 2 1) was studied using a combination of thermal desorption spectroscopy and high resolution core level photoemission spectroscopy. These vicinal Au surfaces both have 6-fold coordinated atoms at the step edges but have a different terrace structure. The CO adsorption behavior was found to be very similar for both surfaces. Three different desorption peaks due to chemisorbed CO were identified, which desorb around 100 K(α), 120 K(β) and 180 K(γ), respectively. The C1s and O1s spectra of the chemisorbed CO show a complex shake-up structure. Our experimental results indicate that CO only adsorbs on the step atoms. The different desorption peaks are explained by substrate-mediated long-range interactions between the adsorbates. Comparison with literature results shows that the CO adsorption energy is not only dependent on the coordination number of the Au atoms, but that the exact geometrical structure of the surface also plays a role.  相似文献   

3.
The growth mode and electronic structure of Au nano-clusters grown on NiO and TiO2 were analyzed by reflection high-energy electron diffraction, a field-emission type scanning electron microscope, medium energy ion scattering and photoelectron spectroscopy. Au was deposited on clean NiO(0 0 1)-1 × 1 and TiO2(1 1 0)-1 × 1 surfaces at room temperature with a Knudsen cell at a rate of 0.25-0.35 ML/min (1 ML = 1.39 × 1015 atoms/cm2:Au(1 1 1)). Initially two-dimensional (2D) islands with thickness of one Au-atom layer grow epitaxially on NiO(0 0 1) and then neighboring 2D-islands link each other to form three-dimensional (3D)-islands with the c-axis oriented to the [1 1 1] direction. The critical size to form 3D-islands is estimated to be about 5 nm2. The shape of the 3D-islands is well approximated by a partial sphere with a diameter d and height h ranging from 2.0 to 11.8 nm and from 0.95 to 4.2 nm, respectively for Au coverage from 0.13 to 4.6 ML. The valence band spectra show that the Au/NiO and Au/TiO2 surfaces have metallic characters for Au coverage above 0.9 ML. We observed Au 4f spectra and found no binding energy shift for Au/NiO but significant higher binding energy shifts for Au/TiO2 due to an electron charge transfer from Au to TiO2. The work function of Au/NiO(0 0 1) gradually increases with increase in Au coverage from 4.4 eV (NiO(0 0 1)) to 5.36 eV (Au(1 1 1)). In contrast, a small Au deposition(0.15 to 1.5 ML) on TiO2(1 1 0) leads to reduction of the work function, which is correlated with an electron charge transfer from Au to TiO2 substrate.  相似文献   

4.
In situ scanning tunneling microscopy (STM) studies of homoepitaxial electrodeposition on Au(1 1 1) from hydrochloric acid solution reveal an unusual deposit morphology in the potential regime of the Au surface reconstruction, where the deposited Au islands are separated by nanoscale grooves with preferred widths of 6 and 12 nm. The formation of these structures is attributed to a hindered coalescence of the islands, caused by elastic energy contributions of the reconstructed bottom of the grooves.  相似文献   

5.
N. Zhu  T. Komeda 《Surface science》2007,601(8):1789-1794
We investigate the structure of submonolayer film of 4,4′-biphenyl dicarboxylic acid (BDA) molecules on Au(1 1 1)-22 × √3 reconstructed surface with the use of scanning tunneling microscopy (STM). The BDA molecules form ordered structures on Au(1 1 1) surface which are commensurate with the substrate. We have concluded that the molecule-molecule interaction is mainly through hydrogen bonding formed by a straight dimer of BDA molecules. The straight dimer can be expressed as 4s + 2t or its six crystallographic equivalents using the unit vectors of the gold substrate of s and t. The length of hydrogen bonding (O-H-O) is estimated to be 0.31 nm assuming nearest neighbor distance of gold atoms of 0.275 nm. The ordering shows a clear contrast with the case of BDA on Cu(1 0 0) surface [S. Stepanow, N. Lin, F. Vidal, A. Landa, M. Ruben, J.V. Barth, K. Kern, Nanoletters 5 (2005) 901] in which a square type of ordering of molecules is observed by the formation of hydrogen bonding between a carboxylate (COO) and a benzene ring. The clear difference of the ordered structure on Cu(1 0 0) and Au(1 1 1) surface demonstrates that the absence (presence) of deprotonation of carboxyl group of BDA molecule on Au(1 1 1) (Cu(1 0 0)) switches the straight and square type ordering of BDA molecules.  相似文献   

6.
Homoepitaxial growth of Au on Bi-covered Au(1 1 1) was studied at room temperature using reflection high-energy electron diffraction (RHEED) and Auger electron spectroscopy (AES). From observations of RHEED it is found that the Au(1 1 1) (23 × 1) reconstruction structure changes to a (1 × 1) by about 0.16-0.5 ML deposition of Bi and to a (2√3 × 2√3)R30° by about 1.0 ML deposition of Bi, respectively. The surface morphology evolution by Bi deposition leads to a change of Au homoepitaxial growth behavior from layer-by-layer to step flow. This indicates that the surface diffusion distance of Au atoms on the Bi-precovered (1 × 1) and (2√3 × 2√3)R30° surfaces is longer than that on the Au(1 1 1) (23 × 1) clean surfaces. A strong surface segregation of Bi was found at top of surface. It is concluded that Bi atoms acted as an effective surfactant in the Au homoepitaxial growth by promoting Au intralayer mass transport.  相似文献   

7.
First-principles calculations have been performed to investigate the adsorption of oxygen on unreconstructed and reconstructed Ni(1 1 0) surfaces. The energetics, structural, electronic and magnetic properties are given in detail. For oxygen adsorption on unreconstructed surface, (n×1)(n=2,3) substrate with oxygen atom on short-bridge site is found to be the most stable adsorption configuration. Whereas energetically most favorable adsorption phase of reconstructed surface is p(n×1) substrate with oxygen atom located at long-bridge site. Our calculations suggest that the surface reconstruction is induced by the oxygen adsorption. We also find there are redistributions of electronic structure and electron transfer from the substrate to adsorbate. Our calculations also indicate surface magnetic moment is enhanced on clean surfaces and oxygen atoms are magnetized weakly after oxygen adsorption. Interestingly, adsorption on unreconstructed surface does not change surface magnetic moment. However, adsorbate leads to reduction of surface magnetic moment in reconstructed system remarkably.  相似文献   

8.
Intermixing, growth, geometric and electronic structures of gold films grown on antiferromagnetic stacking body-centered-tetragonal manganese (0 0 1) films were studied by means of scanning tunneling microscopy/spectroscopy at room temperature in ultra-high vacuum. We found stable ordered c(2 × 2)-MnAu(0 0 1) alloy layers after depositing Au on pure Mn layers. Since at the fourth layer (5 × 23)-like Au reconstruction appears instead of the c(2 × 2) structure and local density of states peaks obtained on the c(2 × 2)-MnAu surface disappear, pure Au layers likely grow from the fourth layer.  相似文献   

9.
Y. Fukuda  T. Kuroda  N. Sanada 《Surface science》2007,601(23):5320-5325
A soft X-ray appearance potential spectroscopy (SXAPS) apparatus with high sensitivity was built to measure non-derivative spectra. SXAPS spectra (non-derivative) of Ti 2p and O 1s for TiO2(1 1 0)-1 × 2 and (0 0 1)-1 × 1 surfaces have been measured using low incident currents (about 10 μA/cm2) and a photon counting mode. Density of empty states on Ti and O sites are deduced by self-deconvoluting the spectra. The self-deconvoluted SXAPS spectra are qualitatively similar to those measured by X-ray absorption spectroscopy (XAS). The Ti 2p3/2 spectrum shows two strong peaks which correspond to t2g and eg states. For the O 1s spectrum two strong peaks near the threshold are also found which can be ascribed to O 2pπ and O 2pσ states. These results suggest that the spectra almost obey the dipole selection rule, so-called the “approximate dipole selection rule”. The SXAPS spectra of Ti 2p and O 1s for the (1 1 0) and (0 0 1) surfaces resemble qualitatively, which is consistent with the XAS results. The spectra measured on the (1 1 0)-1 × 2 surface at an incident angle of 45° off normal to the surface and on the (1 1 0) surface sputtered by Ar ions indicate that SXAPS is very sensitive to the surface electronic states.  相似文献   

10.
J. Zachariae 《Surface science》2006,600(13):2785-2794
Exploring ways for self-organized structuring of insulating thin films, we investigated the possibility to produce replicas of step trains, given by a vicinal Si(0 0 1)-4°[1 1 0] surface, in layers of crystalline and perfectly lattice-matched Ba0.7Sr0.3O. For this purpose, we carried out high-resolution spot profile analyses in low-energy electron diffraction (SPA-LEED) both on flat Si(0 0 1) and on Si(0 0 1)-4°[1 1 0]. Oxide layers were generated by evaporating the metals in oxygen ambient pressure with the sample at room temperature. Our G(S) analysis of these mixed oxide layers reveals a strong influence of local compositional fluctuations of Sr and Ba ions and their respective scattering phases, which appears as an unphysically large variation of layer distances. Nevertheless, we are able to show that quite smooth and closed oxide films are obtained with an rms roughness of about 1 ML. These Ba0.7Sr0.3O films directly follow the step train of Sr-modified vicinal Si surfaces that form (1 1 3) oriented facets after adsorption of a monolayer of Sr. This proves that self-organized structuring of insulating films can indeed be an effective method.  相似文献   

11.
Molecular dynamics simulations incorporating an analytic embedded atom potential have been used to investigate the atomic structure and surface order of the Al vicinal surfaces for the temperature up to 900 K. The relaxation, mean square vibrational amplitude, and structure factor as a function of temperature, and of the terrace width for the p(1 0 0) × (1 1 1) surfaces (2 ≤ p ≤ 10) are discussed. The obtained structure factor indicates that the anharmonic effect reduces with increasing terrace widths. The decrease of surface energy with increasing terrace width also supports this conclusion.  相似文献   

12.
The potential-induced (1 × 1) → “hex” transition on Au(1 0 0) electrodes in 0.01 M Na2SO4 + 1 mM HCl was studied by in situ scanning tunneling microscopy at high time resolution (Video-STM). According to these observations the elementary units of the “hex” surface reconstruction, hexagonally-ordered strings in the Au surface layer, are highly dynamic nanoscale objects. Isolated “hex” strings exhibit dynamic fluctuations in structure and position on the millisecond timescale. These fluctuations exceed the mobility of multistring “hex” domains by several orders of magnitude and can be explained by collective dynamic processes within the strings. Furthermore, the observations reveal a novel 1D mass transport mechanism along the strings, details on the nucleation and growth of “hex” strings and complex string restructuring processes, facilitating “hex” domain ripening.  相似文献   

13.
We have studied the influence of oxygen pressure during the cyclic annealing used for the cleaning of W(1 1 0) surfaces. For this purpose the surface morphology and electronic properties are measured by means of scanning tunneling microscopy (STM) and spectroscopy (STS), respectively. It is found that the surfaces with impurity atom densities as low as 2 × 10−3 can be obtained by gradually reducing the oxygen pressure between subsequent annealing cycles down to about 2 × 10−8 mbar in the final cycle. Only on the clean surface a bias-dependent spatial modulation of the local density of states (LDOS) is observed at step edges and around impurity sites by STS. In addition, we find a pronounced peak in the occupied states. In combination with density functional theory calculations these features can be traced back to a dispersive pz-dxz-type surface resonance band and the lower band edge of a surface state, respectively.  相似文献   

14.
In situ electrochemical scanning tunneling microscopy (STM) has been used to examine the structures of benzenethiol adlayers on Au(1 0 0) and Pt(1 0 0) electrodes in 0.1 M HClO4, revealing the formation of well-ordered adlattices of Au(1 0 0)-(√2 × √5) between 0.2 and 0.9 V and Pt(1 0 0)-(√2 × √2)R45° between 0 and 0.5 V (versus reversible hydrogen electrode), respectively. The coverage of Au(1 0 0)-(√2 × √5) is 0.33, which is identical to those observed for upright alkanethiol admolecules on Au(1 1 1). In comparison, the coverage of Pt(1 0 0)-(√2 × √2)R45° - benzenethiol is 0.5, much higher than those of thiol molecules on gold surfaces. This result suggests that benzenethiol admolecules on Pt(1 0 0) could stand even more upright than those on Au(1 0 0). All benzenethiol admolecules were imaged by the STM as protrusions with equal corrugation heights, suggesting identical molecular registries on Au(1 0 0) and Pt(1 0 0) electrodes, respectively. Modulation of the potential of a benzenethiol-coated Au(1 0 0) electrode resulted in irreversible desorption of admolecules at E ? 0.1 V (vs. reversible hydrogen electrode) and oxidation of admolecules at E ? 0.9 V. In contrast, benzenethiol admolecule was not desorbed from Pt(1 0 0) at potentials as negative as the onset of hydrogen evolution. Raising the potential rendered deposition of more benzenethiol molecules before oxidation of admolecules commenced at E > 0.9 V.  相似文献   

15.
Using infrared reflection absorption spectroscopy (IRRAS) and temperature programmed desorption (TPD), we investigated carbon monoxide (CO) adsorption and desorption behaviors on atomic checkerboard structures of Cu and Pd formed by Pd vacuum deposition at various temperatures of Cu(1 0 0). The 0.15-nm-thick Pd deposition onto a clean Cu(1 0 0) surface at room temperature (RT) showed a clear c(2 × 2) low-energy electron diffraction (LEED) pattern, i.e. Cu(1 0 0)-c(2 × 2)-Pd. The RT-CO exposure to the c(2 × 2) surfaces resulted in IRRAS absorption caused by CO adsorbed on the on-top sites of Pd. The LEED patterns of the Pd-deposited Cu(1 0 0) at higher substrate temperatures revealed less-contrasted c(2 × 2) patterns. The IRRAS intensities of the linearly bonded CO bands on 373-K-, 473-K-, and 673-K-deposited c(2 × 2) surfaces are, respectively, 25%, 22%, and 10% less intense than those on the RT-deposited surface, indicating that Pd coverages at the outermost c(2 × 2) surfaces decrease with increasing deposition temperature. In the initial stage of the 90-K-CO exposure to the RT surface, the band attributable to CO bonded to the Pd emerged at 2067 cm−1 and shifted to higher frequencies with increasing CO exposure. At saturation coverage, the band was located at 2093 cm−1. In contrast, two distinct bands around 2090 cm−1 were apparent on the spectrum of the 473-K-deposited surface: the CO saturation spectrum was dominated by an apparent single absorption at 2090 cm−1 for the 673-K-deposited surface. The TPD spectra of the surfaces showed peaks at around 200 and 300 K, which were ascribable respectively to Cu-CO and Pd-CO. Taking into account the TPD and IRRAS results, we discuss the adsorption-desorption behaviors of CO on the ordered checkerboard structures.  相似文献   

16.
Xueing Zhao 《Surface science》2007,601(12):2445-2452
This article reports photoemission and STM studies for the adsorption and dissociation of water on Ce-Au(1 1 1) alloys and CeOx/Au(1 1 1) surfaces. In general, the adsorption of water at 300 K on disordered Ce-Au(1 1 1) alloys led to O-H bond breaking and the formation of Ce(OH)x species. Heating to 500-600 K induced the decomposition or disproportionation of the adsorbed OH groups, with the evolution of H2 and H2O into gas phase and the formation of Ce2O3 islands on the gold substrate. The intrinsic Ce ↔ H2O interactions were explored by depositing Ce atoms on water multilayers supported on Au(1 1 1). After adsorbing Ce on ice layers at 100 K, the admetal was oxidized immediately to yield Ce3+. Heating to room temperature produced finger-like islands of Ce(OH)x on the gold substrate. The hydroxyl groups dissociated upon additional heating to 500-600 K, leaving Ce2O3 particles over the surface. On these systems, water was not able to fully oxidize Ce into CeO2 under UHV conditions. A complete Ce2O3 → CeO2 transformation was seen upon reaction with O2. The particles of CeO2 dispersed on Au(1 1 1) did not interact with water at 300 K or higher temperatures. In this respect, they exhibited the same reactivity as does a periodic CeO2(1 1 1) surface. On the other hand, the Ce2O3/Au(1 1 1) and CeO2−x/Au(1 1 1) surfaces readily dissociated H2O at 300-500 K. These systems showed an interesting reactivity for H2O decomposition. Water decomposed into OH groups on Ce2O3/Au(1 1 1) or CeO2−x/Au(1 1 1) without completely oxidizing Ce3+ into Ce4+. Annealing over 500 K removed the hydroxyl groups leaving behind CeO2−x/Au(1 1 1) surfaces. In other words, the activity of CeOx/Au(1 1 1) for water dissociation can be easily recovered. The behavior of gold-ceria catalysts during the water-gas shift reaction is discussed in light of these results.  相似文献   

17.
(n × 1) reconstructions and facetting of the (1 1 0) polar surface of SrTiO3 are studied by means of a combination of shell model and density functional calculations. The polarity compensation can be achieved through the formation of {1 0 0} nano-facets, which play a crucial role in the reconstruction process. The behaviors of various possible terminations (Sr, Ti, and O) are analyzed, as well as their atomic structure and energetics. Their stability in different chemical environments is discussed, with respect to previous formulations and experimental results. The Sr-terminated surface tends to expose large facets, while the TiO and O terminations are marginally stabilized or even destabilized by (n × 1) reconstructions, respectively. Trend to facetting results from a subtle competition between the thermodynamic stability of the ideal non stoichiometric (n × 1) surfaces, and huge atomic relaxations that contribute to the lowering of the surface energy differently for each termination.  相似文献   

18.
M. Krawiec  M. Kisiel 《Surface science》2006,600(8):1641-1645
The electronic structure of Si(1 1 1)-(6 × 6)Au surface covered with submonolayer amount of Pb is investigated using scanning tunneling spectroscopy. Already in small islands of Pb with thickness of 1 ML Pb(1 1 1) and with the diameter of only about 2 nm we detected the quantized electronic state with energy 0.55 eV below the Fermi level. Similarly, the I(V) characteristics made for the Si(1 1 1)-(6 × 6)Au surface reveal a localized energy state 0.3 eV below the Fermi level. These energies result from fitting of the theoretical curves to the experimental data. The calculations are based on tight binding Hubbard model. The theoretical calculations clearly show prominent modification of the I(V) curve due to variation of electronic and topographic properties of the STM tip apex.  相似文献   

19.
H. Rauscher  R.J. Behm 《Surface science》2007,601(19):4608-4619
The interaction of CO with structurally well-defined PtxRuy surface alloys supported on Ru(0 0 0 1) was investigated by thermal desorption spectroscopy and infrared reflection-absorption spectroscopy. The surface composition and the distribution of the surface atoms were controlled by high resolution scanning tunneling microscopy. On these surfaces, which have a nearly random distribution of the two surface species, the adsorption (and desorption) of CO is strongly modified compared to the pure elemental surfaces, by strain effects and electronic ligand effects. CO adsorbs exclusively in a linear configuration on Pt and Ru atoms for all surfaces investigated. The adsorption energy of CO is lowered on the alloy surfaces with respect to both Pt(1 1 1) and Ru(0 0 0 1), similar as for pseudomorphic monolayer Pt films. For both Pt and Ru sites the adsorption strength decreases with increasing Pt concentration.  相似文献   

20.
Studies of strain-induced changes in surface properties of metal/alloy surface have long been concerned by lot of scientists. However, the strain effects on the work function (WF), and in particular, its physical mechanism have not been well understood. In this paper, we employed a first-principles method to study the effects of biaxial strain in WF on the (0 0 1), (1 1 0) and (1 1 1) surfaces of AlCu3. The relationship among the WF change, atomic relaxation and charge transfer induced by strain was discussed. The calculated results showed that tensile strain decreased the WF, while the compressive strain increased the WF; a larger atomic relaxation often followed with a larger WF change. The sensitivity of the WF with respect to the strain was strongly dependent on the direction of the surface or the density of atom packed plane of the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号