首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Z. Aydu?an  B. Alkan  M. Çakmak 《Surface science》2009,603(15):2271-2275
Ab initio calculations, based on pseudopotentials and density functional theory (DFT), have been performed to investigate the effect of hydrogenation on the electronic properties of P/Si(0 0 1)-(1 × 2) surface. In parallel with this, the electronic band structure of the hydrogenated and non-hydrogenated P/Si(0 0 1)-(1 × 2) surface have been calculated for half- and full-monolayer P. For the mixed Si-P dimer structure, we have identified two occupied and one unoccupied surface state, which correspond to 0.5 ML coverage of P. When this surface is terminated with H, we see that two occupied states completely disappeared and that one unoccupied state is shifted towards the conduction band. A similar calculations for the 1 ML coverage of P have been also carried out. It is seen that the unoccupied state C1 appeared in the P/Si(0 0 1)-(1 × 2) surface is passivated when this surface is terminated with the H atoms. To explain the nature of the surface states, we have also plotted the total and partial charge densities at the point of the Surface Brillouin Zone (SBZ).  相似文献   

2.
M. Çakmak  E. Mete 《Surface science》2007,601(18):3711-3716
Ab initio calculations, based on pseudopotentials and density functional theory, have been performed to investigate the effect of hydrogenation on the atomic geometries and the energetics of substitutional boron on the generic Si(0 0 1)-(1 × 2) surface. For a single B atom substitution corresponding to 0.5 ML coverage, we have considered two different sites: (i) the mixed Si-B dimer structure and (ii) boron substituting for the second-layer Si to form Si-B back-bond structure, which is energetically more favorable than the mixed Si-B dimer by 0.1 eV/dimer. However, when both of these cases are passivated by hydrogen atoms, the situation is reversed and the Si-B back-bond case becomes 0.1 eV/dimer higher in energy than the mixed Si-B dimer case. For the B incorporation corresponding to 1 ML coverage, among the substitutional cases, 100% interdiffusion into the third layer of Si and 50% interdiffusion into the second layer of Si are energetically similar and more favorable than the other cases that are considered. However, when the surface is passivated with hydrogen, the B atoms energetically prefer to stay at the third layer of the Si substrate.  相似文献   

3.
M. Çakmak  Z. Aydu?an 《Surface science》2007,601(6):1489-1493
Ab initio calculations, based on pseudopotentials and density functional theory, have been performed to investigate the effect of hydrogenation on the atomic geometries and energetics of substitutional phosphorus (P) on the generic Si(0 0 1)-(1 × 2) surface. For the 0.5 ML coverage of P, we have considered three different substitutional sites: (i) the mixed Si-P dimer structure (i.e., the P-nondiffused case), (ii) P-interdiffused to the second layer Si (i.e., intermixed P-Si bond structure) and (iii) P-interdiffused to the third layer Si. We have found that the mixed Si-P dimer structure is 0.79 eV/dimer energetically more favorable than the P-interdiffused case. However, for the hydrogenation of above cases, we have found that the situation is reversed and the interdiffused case is 0.3 eV/dimer energetically more favorable than the P-nondiffused case. Reductions in the number of P-Si is identified as a contributing factor which determines energetically the stable structures during P on Si(0 0 1).  相似文献   

4.
R. Koch 《Surface science》2006,600(20):4694-4701
The (2 × n) superstructure of Si(0 0 1) consists of elongated (2 × 1) reconstructed stripes separated by a dimer-vacancy line every few nanometers, thus offering a means to obtain a nanopattered Si(0 0 1) surface. Scanning tunneling microscopy (STM) investigations of Si(0 0 1) substrates that were deoxidized at 880-920 °C reveal that the formation of the (2 × n) depends strongly on the Si coverage of the topmost surface layer. It forms only in a narrow coverage window ranging from 0.6 to 0.8 ML. Systematic Monte Carlo simulations by an algorithm that combines the diffusion of monomers and dimers with the simultaneous deposition of Si onto the Si(0 0 1) surface, corroborate the STM results and suggest Si deposition as a viable alternative for introducing dimer vacancies in a well-defined manner.  相似文献   

5.
We present the results of scanning tunneling microscopy (STM) and photoemission spectroscopy (PES) of the Ta/Si(1 1 1)-7 × 7 system after deposition of Ta at substrate temperatures from 300 to 1250 K. The coverage of Ta varied from 0.05 up to 2.5 of a monolayer (ML). STM shows that at 300 K and coverage less than 1 ML, a disordered chemisorbed phase is formed. Deposition on a hot surface (above 500 K) produces round 3D clusters randomly distributed on the surface. Cluster height and their diameter are found to change drastically with annealing temperature and the Ta coverage. Analysis of photoemission data of the Si 2p core levels shows that at room temperature and at coverage ?1 ML core level binding energy shifts and intensity variations of Si surface related components are observed, which clearly indicate that the reaction starts already at 300 K. Shifts in the binding energy, changes of the peak shapes and intensity of the Ta 4f doublet at higher temperatures can be explained by the formation of stable silicide on the surface.  相似文献   

6.
Na adsorption at room temperature causes the Na/Si(1 1 1)3 × 1 surface with Na coverage of 1/3 monolayer (ML) to transit into the Na/Si(1 1 1)6 × 1 surface at 1/2 ML and sequentially into the Na/Si(1 1 1)3 × 1 surface at 2/3 ML. The phase transition was studied by Si 2p core-level photoemission spectroscopy. The detailed line shape analysis of the Si 2p core-level spectrum of the Na/Si(1 1 1)3 × 1 surface (2/3 ML) is presented and compared to the Na/Si(1 1 1)3 × 1 surface (1/3 ML) which is composed of Si honeycomb chain-channel structures. This suggests that as additional Na atoms form atomic chains resulting in the Na/Si(1 1 1)3 × 1 surface (2/3 ML), the inner atoms of the Si honeycomb chain-channel structure is buckled due to the additional Na atoms.  相似文献   

7.
The growth processes and structures of Ga layers formed on a Si(0 0 1) surface have been studied by scanning tunneling microscopy (STM) and abinitio calculation. The precursor states of the Ga clusters that compose the Si(0 0 1) 8 × n-Ga (n = 4, 5, 6) structures are observed in addition to the 2 × 2- and 4 × 2-Ga structures at a Ga coverage of 0.55 ML at 300 °C. There are two types of precursor clusters whose protrusions are observed as different shapes in filled-state STM images. We compare the observed STM images with the simulated ones to identify the possible structural models. From the results, we determine the structure of each precursor cluster. On the basis of the results, the formation processes of the cluster are discussed.  相似文献   

8.
M. Krawiec  M. Kisiel 《Surface science》2006,600(8):1641-1645
The electronic structure of Si(1 1 1)-(6 × 6)Au surface covered with submonolayer amount of Pb is investigated using scanning tunneling spectroscopy. Already in small islands of Pb with thickness of 1 ML Pb(1 1 1) and with the diameter of only about 2 nm we detected the quantized electronic state with energy 0.55 eV below the Fermi level. Similarly, the I(V) characteristics made for the Si(1 1 1)-(6 × 6)Au surface reveal a localized energy state 0.3 eV below the Fermi level. These energies result from fitting of the theoretical curves to the experimental data. The calculations are based on tight binding Hubbard model. The theoretical calculations clearly show prominent modification of the I(V) curve due to variation of electronic and topographic properties of the STM tip apex.  相似文献   

9.
We have studied Si(0 0 1)-Ga surface structures formed at Ga coverages of slightly above 0.50 monolayer (ML) at 250 °C by scanning tunneling microscopy (STM). 4 × 2-, 5 × 2-, and 6 × 2-Ga structures were observed in a local area on the surface. The 4 × 2-Ga structure consists of three protrusions, as observed in filled- and empty-state STM images. The characters of these structures are clearly different from those of other Si(0 0 1)-Ga structures. We also performed an ab initio calculation of the energetics for several possible models for the 4 × 2-Ga structure, and clarified that the three-orthogonal-Ga-dimer model is the most stable. Also, the results of comparing the simulated STM images and observation images at various bias voltages indicate that this structural model is the most favorable.  相似文献   

10.
From ab initio studies employing the pseudopotential method and the density functional scheme, we report on progressive changes in geometry, electronic states, and atomic orbitals on Si(0 0 1) by adsorption of different amounts of Bi coverage. For the 1/4 ML coverage, uncovered Si dimers retain the characteristic asymmetric (tilted) geometry of the clean Si(0 0 1) surface and the Si dimers underneath the Bi dimer have become symmetric (untilted) and elongated. For this geometry, occupied as well as unoccupied surface states are found to lie in the silicon band gap, both sets originating mainly from the uncovered and tilted silicon dimers. For the 1/2 ML coverage, there are still both occupied and unoccupied surface states in the band gap. The highest occupied state originates from an elaborate mixture of the pz orbital at the Si and Bi dimer atoms, and the lowest unoccupied state has a ppσ* antibonding character derived from the Bi dimer atoms. For 1 ML coverage, there are no surface states in the fundamental bulk band gap. The highest occupied and the lowest unoccupied states, lying close to band edges, show a linear combination of the pz orbitals and ppσ* antibonding orbital characters, respectively, derived from the Bi dimer atoms.  相似文献   

11.
Ab initio calculations of the reflectance anisotropy of Si(1 1 1)-In surfaces are presented. A very pronounced optical anisotropy around 2 eV is found that is related to In-chain states. The distortion of the indium chains characteristic for the (4 × 1) → (8 × 2) phase transition results in a splitting of the 2 eV peak, as observed experimentally. The splitting occurs irrespective wether the phase transition occurs according to the trimer or hexamer model.  相似文献   

12.
We have carried out adsorption and residual thermal desorption experiments of Indium on Si (1 1 1) 7 × 7 reconstructed surface, in the submonolayer regime, in Ultra High Vacuum (UHV) using in situ probes such as Auger Electron Spectroscopy (AES) and Low Energy Electron Diffraction (LEED). The coverage information from AES and the surface symmetry from LEED is used to draw a 2D phase diagram which characterizes each observed superstructural phases. The different superstructural phases observed are Si(1 1 1)7 × 7-In, Si(1 1 1)√3 × √3R30°-In, Si(1 1 1)4 × 1-In, Si(1 1 1)2√3 × 2√3R30°-In and Si(1 1 1)√7 × √3-In in characteristic temperature and coverage regime. In addition to the 1/3 ML, √3 × √3-In phase, we observe two additional √3 × √3-In phases at around 0.6 and 1 ML. Our careful residual thermal desorption studies yields the Si(1 1 1)2√3 × 2√3R30°-In phase which has infrequently appeared in the literature. We probe theoretically the structure of this phase according to the LEED structure and coverage measured by AES, assuming that the model for Si(1 1 1)2√3 × 2√3R30°-In is very proximal to the well established Si(1 1 1)2√3 × 2√3R30°-Sn phase, using ab initio calculation based on pseudopotentials and Density Functional Theory (DFT) to simulate an STM image of the system. Calculations show the differences in the atomic position and charge distribution in the Si(1 1 1)2√3 × 2√3R30°-In case.  相似文献   

13.
Using scanning tunneling microscopy, growth of In nanoisland arrays on the Si(1 0 0)-c(4 × 12)-Al surface has been studied for In coverage up to 1.1 ML and substrate temperature from room temperature to 150 °C. In comparison to the case of In deposition onto the clean Si(1 0 0) surface or Si(1 0 0)4 × 3-In reconstruction, the In growth mode is changed by the c(4 × 12)-Al reconstruction from the 2D growth to 3D growth, thus displaying a vivid example of the Volmer-Weber growth mode. Possible crystal structure of the grown In nanoislands is discussed.  相似文献   

14.
Lead (Pb) has been a prototypical system to study diffusion and reconstruction of silicon surfaces. However, there is a discrepancy in literature regarding the critical coverage at which island formation takes place in the Stranski-Krastanov (S-K) mode. We address this issue by studying the initial stages of evolution of the Pb/Si(1 1 1)7 × 7 system by careful experiments in ultra-high vacuum with in situ characterization by auger electron spectroscopy, electron energy loss spectroscopy and low-energy electron diffraction. We have adsorbed Pb onto clean Si(1 1 1 )7 × 7 surface with sub-monolayer control at different flux rates of 0.05 ML/min, 0.14 ML/min and 0.22 ML/min, at room temperature. The results clearly show that the coverage of the Pb adlayer before the onset of 3D Pb islands in the S-K mode depends on the flux rates. LEED results show the persistence of the (7 × 7) substrate reconstruction until the onset of the island formation, while EELS results do not show any intermixing at the interface. This suggests that the flux rates influence the kinetics of growth and the passivation of dangling bonds to result in the observed rate-dependent adlayer coverages.  相似文献   

15.
The adsorption-desorption behavior of Si adatoms on GaAs(1 1 1)A-(2 × 2) surfaces is investigated using our ab initio-based approach, in which adsorption and desorption behavior of Si adatoms is described by comparing the calculated desorption energy obtained by total-energy electronic-structure calculations with the chemical potential estimated by quantum statistical mechanics. We find that the Si adsorption at the Ga-vacancy site on the (2 × 2) surfaces with As adatoms occurs less than 1140-1590 K while the adsorption without As adatom does less than 630-900 K. The change in adsorption temperature of Si adatoms by As adatoms is due to self-surfactant effects of As adatoms: the promotion of the Si adsorption triggered by As adatoms is found to be interpreted in terms of the band-energy stabilization. Furthermore, the stable temperature range for Si adsorbed surfaces with As adatoms agrees with the experimental results. The obtained results provide a firm theoretical framework to clarify n-type doping processes during GaAs epitaxial growth.  相似文献   

16.
We have performed total-energy calculations to study theoretical scanning tunneling microscopy (STM) images of the Si(1 1 1)3 × 2 surfaces induced by the adsorption of alkaline-earth metals (AEMs). Previously, in a series of works on Ba/Si(1 1 1) system, we have found that the observed Si(1 1 1)3 × 1-Ba LEED phase indeed has a 3 × 2 periodicity with a Ba coverage of 1/6 ML and the HCC substrate structure. Based on results of the Ba case, we proposed that the HCC structure is also adopted for other AEM atoms, which was confirmed by our recent work. In this paper, we mainly report the STM simulations for different AEM systems to compare with existing experimental data. We discuss the difference in the detailed STM images for different AEM adsorbates. Especially, the difference in filled-state images between Mg and other AEM atoms is attributed to the strong Mg-Si interaction.  相似文献   

17.
We studied the low temperature (T ? 130 K) growth of Ag on Si(0 0 1) and Si(1 1 1) flat surfaces prepared by Si homo epitaxy with the aim to achieve thin metallic films. The band structure and morphology of the Ag overlayers have been investigated by means of XPS, UPS, LEED, STM and STS. Surprisingly a (√3 × √3)R30° LEED structure for Ag films has been observed after deposition of 2-6 ML Ag onto a Si(1 1 1)(√3 × √3)R30°Ag surface at low temperatures. XPS investigations showed that these films are solid, and UPS measurements indicate that they are metallic. However, after closer STM studies we found that these films consists of sharp Ag islands and (√3 × √3)R30°Ag flat terraces in between. On Si(0 0 1) the low-temperature deposition yields an epitaxial growth of Ag on clean Si(0 0 1)-2 × 1 with a twinned Ag(1 1 1) structure at coverage’s as low as 10 ML. Furthermore the conductivity of few monolayer Ag films on Si(1 0 0) surfaces has been studied as a function of temperature (40-300 K).  相似文献   

18.
Experimental studies of nitrogen adsorbed on a Cu(1 1 1) surface show that the surface layer undergoes a reconstruction to form a pseudo-(1 0 0) structure. We use ab initio techniques to demonstrate the theoretical stability of this reconstructed surface phase over a range of conditions. We systematically investigate the chemisorption of N on the Cu(1 1 1) surface, from 0.06 to 1 ML coverage. A peculiar atomic relaxation of N atoms for 0.75 ML is identified, which results in the formation of a (metastable) “N-trimer cluster” on the surface. We have also investigated surface nitride formation, as suggested from experiments. A surface nitride-like structure similar to the reported pseudo-(1 0 0) reconstruction is found to be highly energetically favored. Using concepts from “ab initio atomistic thermodynamics”, we predict that this surface nitride exists for a narrow range of nitrogen chemical potential before the formation of bulk Cu3N.  相似文献   

19.
The Ga-adsorbed structure on Si(1 1 3) surface at low coverage has been studied by scanning tunneling microscopy (STM). The bright protrusion corresponding to the position of the dimer without the interstitial Si atom of the clean surface disappeared in the filled-state STM image after Ga adsorption, although the protrusion due to the Si adatom still remained. On the basis of the adatom-dimer-interstitial (ADI) model, this result indicates that the Ga atom is adsorbed interstitially at the center of another pentamer that does not have the interstitial Si atom. An ab initio calculation was performed and STM images were simulated.  相似文献   

20.
The carbon 1s near-edge X-ray absorption fine structure (NEXAFS) spectra of the acetylene (C2H2) at 1 ML coverage adsorbed on the Si(0 0 1)-(2 × 1) surface at room temperature have been investigated by multiple-scattering cluster (MSC). The MSC result shows that the correct adsorption model of C2H2/Si(0 0 1)-(2 × 1) is unique, i.e. the dimerized structure with two domains, (2 × 1) and (1 × 2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号