首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe the adsorption of γ–mercaptopropyltrimethoxysilane (γ-MPS) on zinc under various experimental conditions, including the age of the siloxane solution (tag), its pH (7 or 4), and the mode of preparation of the surface (RCA treatment or in situ polishing). It is shown by XPS studies that the structure of the adsorbed monolayer varies dramatically with the pH of the solution. At the natural pH of the siloxane solution (pH 7) where no hydrolysis of the SiOCH3 group occurs, adsorption proceeds through the SH moiety and not through SiOCH3 groups. This preferential attachment through SH is found whatever the age of the solution and the treatment of the zinc. It is confirmed by the fact that n-propyltrimethoxysilane (PSi) does not interact with the surface in the case of very old solutions (adsorption is not observed when Zn is polished in situ and only occurs with RCA zinc treatment for tag > 40 min). With siloxane solutions at pH 4, adsorption of γ-MPS is more complex and the structure of the adsorbed layer depends mainly on the age of the solution. With a fresh solution, hydrolysis is not very advanced and, as mentioned previously, adsorption occurs through the SH group. With older solutions and as a consequence of the progressive hydrolysis of the SiOCH3 group to SiOH, the density of the grafted siloxane monolayer increases (6 min < tag < 10 min), followed by a mixed adsorption through SH and SiOH (10 min < tag < 40–50 min) revealed by the decrease in the normalised (Si2p/S2p)* intensity ratio. Finally, adsorption of dimers and oligomers is observed with still older siloxane solutions. In contrast to PSi whose adsorption on zinc is favoured by the RCA treatment, neither treatment of the surface changes the results significantly in the case of γ-MPS. Comparison with alkanethiols confirms the transition from monomer to dimer adsorption and IRRAS studies clearly indicate a condensation reaction between OH and SH groups.  相似文献   

2.
The (γ′-Fe4N/Si-N)n (n: number of layers) multilayer films and γ′-Fe4N single layer film synthesized on Si (1 0 0) substrates by direct current magnetron sputtering were annealed at different temperatures. The structures and magnetic properties of as-deposited films and films annealed at different temperatures were characterized using X-ray diffraction, scanning electron microscopy and vibrating sample magnetometer. The results showed that the insertion of Si-N layer had a significant influence on the structures and magnetic properties of γ′-Fe4N film. Without the addition of Si-N lamination, the iron nitride γ′-Fe4N tended to transform to α-Fe when annealed at the temperatures over 300 °C. However, the phase transition from γ′-Fe4N to ?-Fe3N occurred at annealing temperature of 300 °C for the multilayer films. Furthermore, with increasing annealing temperature up to 400 °C or above, ?-Fe3N transformed back into γ′-Fe4N. The magnetic investigations indicated that coercivity of magnetic phase γ′-Fe4N for as-deposited films decreased from 152 Oe (for single layer) to 57.23 Oe with increasing n up to 30. For the annealed multilayer films, the coercivity values decreased with increasing annealing temperature, except that the film annealed at 300 °C due to the appearance of phase ?-Fe3N.  相似文献   

3.
We have explored the interlayer diffusion effect of Ge/FePt, GePt/FePt bilayer on the formation of ordered L10 FePt phase. In Ge/FePt bilayer, the Ge3Pt2 compound was formed during post annealing at 400oC for 1.0 h. Diffusion between Ge and FePt layer suppres the formation of ordered L10 FePt phase. With Ge2Pt3 underlayer, the FePt film was ordered at 400 °C and the in-plane coercivity was 9.3 kOe. The ordering temperature was reduced about 50 °C compared to the single layer FePt film.  相似文献   

4.
γ′-Fe4N thin films were grown on MgO-buffered Si (1 0 0) by pulsed laser deposition technique. Different crystallographic orientations and in-plane magnetic anisotropies were achieved by varying the growth temperature of the MgO buffer layer. When the MgO buffer layer was grown at room temperature, the γ′-Fe4N film shows isotropic in-plane magnetic properties without obvious texture; while in-plane magnetic anisotropy was recorded for the γ′-Fe4N films deposited on a 600 °C-grown-MgO buffer due to the formation of a (1 0 0)-oriented biaxial texture. Such a difference in in-plane magnetic anisotropy is attributed to the epitaxial growth of γ′-Fe4N film on an MgO buffer with relaxed strain when the MgO layer was grown at a high temperature of 600 °C.  相似文献   

5.
18Ni-maraging steel has been entirely nanocrystallized by a series of processes including solution treatment, hot-rolling deformation, cold-drawn deformation and direct electric heating. The plasma nitriding of nanocrystallized 18Ni-maraging steel was carried out at 410 °C for 3 h and 6 h in a mixture gas of 20% N2 + 80% H2 with a pressure of 400 Pa. The surface phase constructions and nitrogen concentration profile in surface layer were analyzed using an X-ray diffractometer (XRD) and the glow discharge spectrometry (GDS), respectively. The results show that an about 2 μm thick compound layer (mono-phase γ′-Fe4N) can be produced on the top of the surface layer of nanocrystallized 18Ni-maraging steel plasma nitrided at 410 °C for 6 h. The measured hardness value of the nitrided surface is 11.6 GPa. More importantly, the γ′-Fe4N phase has better plasticity, i.e., its plastic deformation energy calculated from the load-displacement curve obtained by nano-indentation tester is close to that of nanocrystallized 18Ni-maraging steel. Additionally, the mechanical properties of γ′-Fe4N phase were also characterized by first-principles calculations. The calculated results indicate that the hardness value and the ratio of bulk to shear modulus (B/G) of the γ′-Fe4N phase are 10.15 GPa and 3.12 (>1.75), respectively. This demonstrates that the γ′-Fe4N phase has higher hardness and better ductility.  相似文献   

6.
Post-oxidizing treatments can be performed to improve the corrosion resistance of nitrided steel samples. In this paper, plasma nitriding treatments were performed at 540 °C for 4 h using ammonia as the working gas, and plasma post-oxidizing treatments were carried out at temperatures ranging from 350 °C to 500 °C for 2 h in oxygen gas. The treated samples were characterized by using optical microscopy, SEM, XRD, and electrochemical polarization. The X-ray analysis revealed the formation of iron-nitride phases of ?-Fe2-3N and γ′-Fe4N during plasma nitriding and iron oxide phases of hematite (Fe2O3) and magnetite (Fe3O4) through the post-oxidizing treatment. In particular, it was found that the very thin magnetite layer 0.8-1.5 μm in thickness on top of the compound layer was obtained by plasma post-oxidized at 400 °C and 450 °C. It was also demonstrated that the corrosion characteristics of the nitrided compound layer were further improved by post-oxidation treatment.  相似文献   

7.
Nitriding of AISI 303 austenitic stainless steel using microwave plasma system at various temperatures was conducted in the present study. The nitrided layers were characterized via scanning electron microscopy, glancing angle X-ray diffraction, transmission electron microscopy and Vickers microhardness tester. The antibacterial properties of this nitrided layer were evaluated. During nitriding treatment between 350 °C and 550 °C, the phase transformation sequence on the nitrided layers of the alloys was found to be γ → (γ + γN) → (γ + α + CrN). The analytical results revealed that the surface hardness of AISI 303 stainless steel could be enhanced with the formation of γN phase in nitriding process. Antibacterial test also demonstrated the nitrided layer processed the excellent antibacterial properties. The enhanced surface hardness and antibacterial properties make the nitrided AISI 303 austenitic stainless steel to be one of the essential materials in the biomedical applications.  相似文献   

8.
A new coating system of under layer for hot dip zinc coating was explored as an effective coating for steel especially for application in relatively high aggressive environments. The influence of different barrier layers formed prior to hot dip galvanization was investigated to optimize high performance protective galvanic coatings. The deposition of ZnO and Ni-P inner layers and characteristics of hotdip zinc coatings were explored in this study. The coating morphology was characterized by scanning electron microscope (SEM) analysis. The hot dip zinc coatings containing under layer showed substantial improvement in their properties such as good adhesion, and high hardness. In addition, a decrease in the thickness of the coating layer and an enhancement of the corrosion resistance were found. Open circuit potential (OCP) of different galvanized layers in different corrosive media viz. 5% NaCl and 0.5 M H2SO4 solutions at 25 ± 1 °C was measured as a function of time. A nobler OCP was exhibited for samples treated with ZnO and Ni than sample of pure Zn; this indicates a dissolution process followed by passivation due to the surface oxide formation. The high negative OCP can be attributed to the better alloying reaction between Zn and Fe and to the sacrificial nature of the top pure zinc layer.  相似文献   

9.
Research on the icephobic properties of fluoropolymer-based materials   总被引:2,自引:0,他引:2  
Fluoropolymer, because of the extremely low surface energy, could be non-stick to water and thus could be a good candidate as anti-icing materials. In this paper, the icephobic properties of a series of fluoropolymer materials including pristine PTFE plates (P-PTFE), sandblasted PTFE plates (SB-PTFE), two PTFE coatings (SNF-1 and SNF-CO1), a fluorinated room-temperature vulcanized silicone rubber coating (F-RTV) and a fluorinated polyurethane coating (F-PU) have been investigated by using SEM, XPS, ice adhesion strength (tensile and shear) tests, and static and dynamic water contact angle analysis. Results show that the fluoropolymer material with a smooth surface can significantly reduce ice adhesion strength but do not show obvious effect in reducing ice accretion at −8 °C. Fluoropolymers with sub-micron surface structures can improve the hydrophobicity at normal temperature. It leads to an efficient reduction in the ice accretion on the surface at −8 °C, due to the superhydrophobicity of the materials. But the hydrophobicity of this surface descends at a low temperature with high humidity. Consequently, once ice layer formed on the surface, the ice adhesion strength enhanced rapidly due to the existence of the sub-micron structures. Ice adhesion strength of fluoropolymers is highly correlated to CA reduction observed when the temperature was changed from 20 °C to −8 °C. This property is associated with the submicron structure on the surface, which allows water condensed in the interspace between the sub-micron protrudes at a low temperature, and leads to a reduced contact angle, as well as a significantly increased ice adhesion strength.  相似文献   

10.
In this paper, the effect of cubic zinc metaborate Zn4O(BO2)6 on the sintering of MnZn-ferrites for medium frequency power applications is investigated. Zinc metaborate is synthesized in the laboratory using zinc oxide and boric acid as metal precursors. As observed, when zinc metaborate is added to the MnZn-ferrites at an optimum amount of 0.02 wt%, it significantly enhances densification and therefore allows, for a given density, reduction of the firing temperature by almost 200 °C. MnZn-ferrites exhibiting power losses of 70 mW/cm3 (measured at a frequency of 400 kHz, magnetic field 50 mT and temperature of 90 °C) are synthesized from conventionally milled powders with average particle diameter 0.6 μm, compacted and fired at 1100 °C. Identical experiments conducted under the same conditions on specimens without zinc metaborate additions revealed power losses greater than 300 mW/cm3, because of insufficient densification.  相似文献   

11.
In this work, plasma electrolytic surface carburizing of pure iron in aqueous solution consisting of water, glycerin and NH4Cl was investigated. Surface carburizing was carried out in 20% glycerin solution treated at 750 °C, 800 °C, 900 °C and 950 °C temperatures for 5, 10 and 30 min. The formation of hard carbon-rich layer on the surface of pure iron was confirmed by XRD analysis. Metallographic and SEM studies revealed a rough and dense carburized layer on the surface of the pure iron. Experimental results showed that the thickness of the carburized layers changes with the time and temperature. The average thickness of the carburized layer ranged from 20 to 160 μm. The hardness of the carburized samples decreased with the distance from the surface to the interior of the test material. The average hardness values of the carburized layers on the substrate ranged 550-850 HV, while the hardness of the substrate ranged from 110 HV to 170 HV. The dominant phases formed on the pure iron were found to be a mixture of cementite (Fe3C), martensite (Fe + C) and austenite (FCC iron) confirmed by XRD. Wear resistance in all plasma electrolytic carburized samples is considerably improved in relation to the untreated specimen. After carburizing, surface roughness of the samples was increased. Friction coefficients were also increased because of high surface roughness.  相似文献   

12.
In this paper, we report that the phase transformation of Ni-B, Ni-P diffusion barriers deposited electrolessly on Cu, for the reason that the Ni-P layer is a more effective diffusion barrier than the Ni-B layer. The Ni3B crystallized was decomposed to Ni and B2O3 above 400 °C and the Ni3P crystallized was decomposed to Ni and P2O5 above 600 °C respectively in Ar atmosphere. Also, the Ni3B was decomposed to Ni and free B above 400 °C and the Ni3P was decomposed to Ni and free P above 600 °C respectively in H2 atmosphere. The decomposed Ni formed a solid solution with Cu. The Cu diffusion occurred above 400 °C for Ni-B layer and above 600 °C for Ni-P layer, respectively. Because the decomposition temperature of Ni-P layer is about 200 °C higher than that of Ni-B layer, the Ni-P layer is a more effective barrier for Cu than the Ni-B layer.  相似文献   

13.
Ru/CoPtCr-SiO2 bilayer prepared at 4 and 26 mTorr of Ar gas pressure for the deposition of Ru and CoPtCr-SiO2 layers, respectively, exhibits better magnetic properties suitable for perpendicular magnetic recording media when they are deposited at room temperature on a Pt seed layer prepared at 450 °C. The Ru-O seed layer fabricated by a reactive sputtering method improves the Ru (0 0 1) texture deposited on a Ru-O layer. The Ru-O/Ru hybrid type of underlayer causes the improvement of the c-axis orientation of CoPtCr crystallites in the CoPtCr-SiO2 layer deposited on it. Fine granulation of magnetic grains in the CoPtCr-SiO2 layer is also attained when they are deposited on the Aramid type of flexible tape substrates.  相似文献   

14.
Hydrogenated-carbon nitride (CNx:H) films were synthesized on silicon substrate in a large quantity by the pyrolysis of ethylenediamine in a temperature range of 700-950 °C. The influence of temperature on the morphology, structure, adhesion to substrate, and friction and wear behavior of CNx:H films was investigated. It has been found that CNx:H films obtained at 700 °C and 800 °C are amorphous, and those prepared at 900 °C and 950 °C consist of carbon nitride nanocrystal. Besides, CNx:H film sample obtained at 700 °C has the maximum N content of 9.1 at.% but the poorest adhesion to Si substrate, while the one prepared at 900 °C has the lower N content and the highest adhesion to substrate. As a result, nanocrystalline CNx:H (nc-CNx:H) film synthesized at 900 °C possesses the best wear resistance when slides against stainless steel counterpart. N atom is incorporated into the graphitic network in three different bonding forms, and their relative content is closely related to temperature, corresponding to different adhesion as well as friction and wear behavior of the films obtained at different temperatures. Furthermore, the friction coefficient and antiwear life of as-deposited CNx:H films vary with varying deposition temperature and thickness, and the film with thickness of 1.3 μm, obtained at 900 °C, has the longest antiwear life of over 180,000 s.  相似文献   

15.
In this work, a study of annealing process effect on TiN/TiC bilayer is presented. The annealing temperature was varied between room temperature and 500 °C. Materials were produced by the plasma-assisted pulsed vacuum arc discharge technique. In order to grow the films, a target of Ti with 99.9999% purity and stainless-steel 304 substrate were used. For the production of TiN layer, the reaction chamber was filled up with nitrogen gas until reaching 25 Pa and the discharge was performed at 310 V. The TiC layer was grown in a methane atmosphere at 30 Pa and 270 V. X-ray diffraction and X photoelectron spectroscopy were employed for studying the structure and chemical composition evolution during the annealing process. At 400 °C, TiO2 phase begun to appear and it was well observed at 500 °C. Crystallite size and microstrain was obtained as a function of the annealing temperature. XPS technique was employed for analyzing the bilayers before and after the annealing process. Narrow spectra of Ti2p, N1s and O1s were obtained, presenting TiO phases.  相似文献   

16.
The Au/FePt samples were prepared by depositing a gold cap layer at room temperature onto a fully ordered FePt layer, followed by an annealing at 800 °C for the purpose of interlayer diffusion. After the deposition of the gold layer and the high-temperature annealing, the gold atoms do not dissolve into the FePt Ll0 lattice. Compared with the continuous FePt film, the TEM photos of the bilayer Au(60 nm)/FePt(60 nm) show a granular structure with FePt particles embedded in Au matrix. The coercivity of Au(60 nm)/FePt(60 nm) sample is 23.5 kOe, which is 85% larger than that of the FePt film without Au top layer. The enhancement in coercivity can be attributed to the formation of isolated structure of FePt ordered phase.  相似文献   

17.
A relatively thick (i.e., ∼9 nm) SiO2 layer can be formed by oxidation of Si with nitric acid (HNO3) vapor below 500 °C. In spite of the low temperature formation, the leakage current density flowing through the SiO2 layer is considerably low, and it follows the Fowler-Nordheim mechanism. From the Fowler-Nordheim plots, the conduction band offset energy at the SiO2/Si interface is determined to be 2.57 and 2.21 eV for HNO3 vapor oxidation at 500 and 350 °C, respectively. From X-ray photoelectron spectroscopy measurements, the valence band offset energy is estimated to be 4.80 and 4.48 eV, respectively, for 500 and 350 °C oxidation. The band-gap energy of the SiO2 layer formed at 500 °C (8.39 eV) is 0.68 eV larger than that formed at 350 °C. The higher band-gap energy for 500 °C oxidation is mainly attributable to the higher atomic density of the SiO2 layer of 2.46 × 1022/cm3. Another reason may be the absence of SiO2 trap-states.  相似文献   

18.
The paper reports on thermal stability of alumina thin films containing γ-Al2O3 phase and its conversion to a thermodynamically stable α-Al2O3 phase during a post-deposition equilibrium thermal annealing. The films were prepared by reactive magnetron sputtering and subsequently post-deposition annealing was carried out in air at temperatures ranging from 700 °C to 1150 °C and annealing times up to 5 h using a thermogravimetric system. The evolution of the structure was investigated by means of X-ray diffraction after cooling down of the films. It was found that (1) the nanocrystalline γ-Al2O3 phase in the films is thermally stable up to 1000 °C even after 5 h of annealing, (2) the nanocrystalline θ-Al2O3 phase was observed in a narrow time and temperature region at ≥1050 °C, and (3) annealing at 1100 °C for 2 h resulted in a dominance of the α-Al2O3 phase only in the films with a sufficient thickness.  相似文献   

19.
In this study, we report on the structural characterization of Ni layer and Ni/Ti bilayer contacts on n-type 4H-SiC. The resulting Ni-silicides and the redistribution of carbon, after annealing at 950 °C, in the Ni/SiC and the Ni/Ti/SiC contacts are particularly studied by Rutherford Backscattering Spectrometry (RBS) at Eα = 3.2 MeV, nuclear reaction analysis (NRA) at Ed = 1 MeV, scanning electron microscopy (SEM) and Energy Dispersive X-ray Spectrometry (EDS) techniques.  相似文献   

20.
Carbon nanotubes as reinforcement of styrene-butadiene rubber   总被引:1,自引:0,他引:1  
This study reports an easy technique to produce cured styrene-butadiene rubber (SBR)/multi-walled carbon nanotubes (MWCNT) composites with a sulphur/accelerator system at 150 °C. Significant improvement in Young's modulus and tensile strength were achieved by incorporating 0.66 wt% of filler without sacrificing SBR elastomer high elongation at break. A comparison with carbon black filled SBR was also made. Field emission scanning electron microscopy was used to investigate dispersion and fracture surfaces. Results indicated that the homogeneous dispersion of MWCNT throughout SBR matrix and strong interfacial adhesion between oxidized MWCNT and the matrix are responsible for the considerable enhancement of mechanical properties of the composite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号