首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S.Yu. Bulavenko 《Surface science》2006,600(5):1185-1192
The STM technique with a special Bi/W tip was used to study the interaction of hydrogen atoms with the Si(1 1 1)-7 × 7 surface. The reactivity of different room temperature (RT) adsorption sites, such as adatoms (A), rest atoms (R), and corner holes (CH) was investigated. The reactivity of CH sites was found to be ∼2 times less than that of R and A sites. At temperatures higher than RT, hydrogen atoms rearrange among A, R, and CH sites, with increased occupation of R sites (T <  300 °C). Further temperature increase leads to hydrogen desorption, where its surface diffusion plays an active role. We discuss one of the possible desorption mechanisms, with the corner holes surrounded by a high potential barrier. Hydrogen atoms have a higher probability to overcome the desorption barrier rather than diffuse either into or out of the corner hole. The desorption temperature of hydrogen from CH, R, and A sites is about the same, equal to ∼500 °C. Also it is shown that hydrogen adsorption on the CH site causes slight electric charge redistribution over neighbouring adatoms, namely, increases the occupation of electronic states on A sites in the unfaulted halves of the Si(1 1 1)-7 × 7 unit cell. Based on these findings, the indirect method of investigation with conventional W tips was suggested for adsorbate interaction with CH sites.  相似文献   

2.
Initial hydrogen adsorption on the Si(1 1 1) 7 × 7 surface was studied by scanning tunneling microscopy (STM) in an ultrahigh vacuum. Room temperature adsorbed hydrogen on the adatom in the 7 × 7 reconstruction led to depression of adatoms in the STM images. The hydrogen uptake curve at the adatom site as a function of hydrogen exposure time was well represented by Langmuir adsorption. No preferential adsorption was seen among four inequivalent adatoms in the 7 × 7 reconstruction. Adsorption of the adjacent center and corner adatoms respectively showed ∼10% higher adsorption. Even though the number of reacted adatoms in the half unit of the 7 × 7 reconstruction was statistically random, the number of reacted adatoms in the nearest neighbor half unit was enhanced as the number of reacted sites increased in the half unit.  相似文献   

3.
T.H. Andersen 《Surface science》2009,603(1):84-14495
Adsorption of 1,1-dichloroethene (1,1-DCE) at the Si(1 1 1)-7 × 7 surface has been investigated using scanning tunneling microscopy. 1,1-DCE dissociates upon adsorption by breaking one or both CCl bonds. The appearance of reacted adatoms in the 7 × 7 reconstruction is found to vary for both positive and negative sample bias voltages in the range of 0.8 V to 2.5 V. Dissociated Cl atoms bond to adatom sites and appear bright for bias voltages higher than ±1.4 V. The other dissociated species appear dark for bias voltages below ±1.85 V with a preference of 2:1 for bonding to center relative to corner adatom sites. The faulted half unit cell is preferred. It is demonstrated that rest atoms are active in the dissociation of two-thirds of the 1,1-DCE molecules.  相似文献   

4.
The spontaneous dissociation of trichloroethylene molecules on the Si(1 1 1)7 × 7 surface was investigated using STM. Chlorine atoms were identified by using voltage dependent imaging and by observing voltage dependent tip-induced diffusion. At low coverage, we identify one chlorine that dissociates and binds to an adatom, leaving a nearby chlorovinyl group as the other product bound to the surface. Chlorine atoms show strong site selectivity for corner adatoms and some preference for the faulted half of the unit cell. This result differs significantly from previous studies of chlorine on this surface and a site-selective mobile precursor model is used to explain this discrepancy. The observed site-selectivity is consistent with the high electronegativity value for chlorine.  相似文献   

5.
A c(6 × 4) structure formed on Cu(0 0 1) by the coadsorption of Mg and Bi atoms at room temperature has been determined by a tensor low energy electron diffraction analysis. It is an ordered surface ternary alloy with a thickness of single layer, in which Mg, Bi and Cu atoms are mixed in the top layer. In the primitive unit cell, there are one Mg, four Bi, six Cu atoms and one vacancy in the top layer, and substituted Mg and Bi atoms form MgBi4 plane clusters being arranged in the c(6 × 4) order. Structural parameters show that Mg-Bi bond distances in the MgBi4 cluster are 3.01 and 3.07 Å, which are shorter than the summation of metallic radii of Mg and Bi. It is concluded that a direct, attractive interaction between Mg and Bi atoms plays critical role in the formation of the c(6 × 4) structure.  相似文献   

6.
Electronic and structural properties of Bi-terminated reconstructions on GaAs(0 0 1) surface have been studied by scanning tunneling microscopy (STM) and synchrotron radiation core-level spectroscopy. A 2-3 monolayer thick Bi-layer was evaporated on a Ga-terminated GaAs(0 0 1) surface. By heating the surface, the reconstruction changed from (2 × 1) to (2 × 4). The α2 phase with one top Bi dimer and one As or Bi dimer in the third atomic layer per surface unit cell is proposed to explain the STM images of the Bi/GaAs(0 0 1)(2 × 4) surface heated at 400 °C. Bi 5d photoemission from the Bi/GaAs(2 × 4) consisted of two components suggesting two different bonding sites for Bi atoms on the (2 × 4) surface. The variation of the surface sensitivity of the photoemission induced no changes in the intensities of the components indicating that the origins of both components lie in the first surface layer.  相似文献   

7.
We investigated desorption of chlorine atoms on Si (1 1 1)-(7 × 7) surfaces induced by hole injection from scanning tunneling microscope tips. The hole-induced desorption of chlorine atoms had a threshold bias voltage corresponding to the energy position of the S3 surface band originated in Si backbonds. The chlorine atom desorption rate was almost proportional to the square of the tunneling current. We have discussed possible mechanisms that two holes injected into Si surface states get localized at the backbonds of chlorinated Si adatoms, which induces the rupture of Cl-Si bonds to result in chlorine atom desorption.  相似文献   

8.
We report on the in situ observation of temperature-driven drastic morphology evolution and surface pre-melting of the Bi(0 0 1) nanofilm deposited on the Si(1 1 1)-7 × 7 surface by use of spot-profile-analyzing low-energy electron diffraction (SPA-LEED). Surface step density of the single-crystalline, epitaxial Bi(0 0 1) film decreases above 350 K in a critical manner. On annealed Bi(0 0 1) films, we have detected surface pre-melting with a transition temperature of 350 K, which yields reversible diffraction intensity drop in addition to the harmonic Debye-Waller behavior. The observed surface flattening of the as-deposited film is driven by the increased amount of mobile adatoms created through the surface pre-melting.  相似文献   

9.
K. Hayashi  A. Kawasuso 《Surface science》2006,600(19):4426-4429
We have investigated the feature of reflection high-energy positron diffraction (RHEPD) pattern from a Si(1 1 1)-(7 × 7) surface. The RHEPD pattern observed in the total reflection condition is quite different from the conventional reflection high-energy electron diffraction (RHEED) pattern. This fact is attributed to the different penetration depths of positrons and electrons. We show that the intensity distribution of RHEPD pattern is reproduced considering the dimer-adatom-stacking fault (DAS) model with optimized atomic positions and scattering potentials of adatoms and rest atoms.  相似文献   

10.
We have investigated the energetic stability and equilibrium geometry of the adsorption of transition metal Fe atoms near the self-organized Bi lines on hydrogen passivated Si(0 0 1) surface. Our total energy results show that there is an attractive interaction between Fe adatoms along the Bi-nanolines. For the energetically most stable configuration, the Fe adatoms are seven-fold coordinated, occupying the subsurface interstitial sites aside the Bi-nanolines. With increased coverage, Fe atoms are predicted to form two parallel lines, symmetrically on both sides of the Bi line. Within our local spin-density functional calculations, we find that for the most stable geometries the Fe adatoms exhibit an antiferromagnetic coupling.  相似文献   

11.
The first stages of acetylene reaction with the Si(1 1 1)7 × 7 reconstructed surface kept at 600 °C are studied by recording scanning tunneling microscopy (STM) images during substrate exposure at a C2H2 pressure of 2 × 10−4 Pa (2 × 10−2 mbar). We observed the progressive substitution of the 7 × 7 reconstruction with a carbon induced Si(1 1 1)√3×√3R30° reconstruction characterized by an atomic distance of 0.75 ± 0.02 nm, very close to that of the silicon 7 × 7 adatoms. This means that a carbon enrichment of the silicon outermost layers occurs giving rise to the formation of a Si-C phase different from the √3×√3R30° reconstruction typical of Si terminated hexagonal SiC(0 0 0 1) surface with an atomic distance of 0.53 nm. To explain STM images, we propose a reconstruction model which involves carbon atoms in T4 and/or S5 sites, as occurring for B doped Si(1 1 1) surface. Step edges and areas around the silicon surface defects are the first regions involved in the reaction process, which spreads from the upper part of the step edges throughout the terraces. Step edges therefore, progressively flakes and this mechanism leads, for the highest exposures, to the formation of large inlets which makes completely irregular the straight edge typical of the Si(1 1 1)7 × 7 terraces. These observations indicate that there occurs an atomic diffusion like that driving the meandering effect. Finally, the formation of a few crystallites is shown also at the lowest acetylene exposures. This is the first STM experiment showing the possibility to have carbon incorporation in a Si(1 1 1) matrix for higher amounts than expected, at least up to 1/6 of silicon atomic layer.  相似文献   

12.
We have studied hydrogen adsorption on the Ge(1 1 1) c(2 × 8) surface using scanning tunneling microscopy (STM) and angle-resolved photoelectron spectroscopy (ARPES). We find that atomic hydrogen preferentially adsorbs on rest atom sites. The neighbouring adatoms appear higher in STM images, which clearly indicates a charge transfer from the rest atom states to the adatom states. The surface states near the Fermi-level have been followed by ARPES as function of H exposure. Initially, there is strong emission from the rest atom states but no emission at the Fermi-level which confirms the semiconducting character of the c(2 × 8) surface. With increasing H exposure a structure develops in the close vicinity of the Fermi-level. The energy position clearly indicates a metallic character of the H-adsorbed surface. Since the only change in the STM images is the increased brightness of the adatoms neighbouring a H-terminated rest atom, we identify the emission at the Fermi-level with these adatom states.  相似文献   

13.
F. Wiame  V. Maurice  P. Marcus 《Surface science》2007,601(5):1193-1204
Several surface analysis techniques were combined to study the initial stages of oxidation of Cu(1 1 1) surfaces exposed to O2 at low pressure (<5 × 10−6 mbar) and room temperature. Scanning tunneling microscopy (STM) results show that the reactivity is governed by the restructuring of the Cu(1 1 1) surface. On the terraces, oxygen dissociative adsorption leads to the formation of isolated O adatoms and clusters weakly bound to the surface. The O adatoms are located in the fcc threefold hollow sites of the unrestructured terraces. Friedel oscillations with an amplitude lower than 5 pm have been measured around the adatoms. At step edges, surface restructuring is initiated and leads to the nucleation and growth of a two-dimensional disordered layer of oxide precursor. The electronic structure of this oxide layer is characterised by a band gap measured by scanning tunneling spectroscopy to be ∼1.5 eV wide. The growth of the oxide islands progresses by consumption of the upper metal terraces to form triangular indents. The extraction of the Cu atoms at this interface generates a preferential orientation of the interface along the close-packed directions of the metal. A second growth front corresponds to the step edges of the oxide islands and progresses above the lower metal terraces. This is where the excess Cu atoms extracted at the first growth front are incorporated. STM shows that the growing disordered oxide layer consists of units of hexagonal structure with a first nearest neighbour distance characteristic of a relaxed Cu-Cu distance (∼0.3 nm), consistent with local Cu2O(1 1 1)-like elements. Exposure at 300 °C is necessary to form an ordered two-dimensional layer of oxide precursor. It forms the so-called “29” superstructure assigned to a periodic distorted Cu2O(1 1 1)-like structure.  相似文献   

14.
The bismuth-stabilized (2 × 4)-reconstructed InP(1 0 0) surface [Bi/InP(1 0 0)(2 × 4)] has been studied by synchrotron-radiation core-level photoelectron spectroscopy. The spectra are compared with previous core-level data obtained on a clean InP(1 0 0)(2 × 4) surface. The findings support that the P 2p surface-core-level shift (SCLS) of the clean InP(1 0 0)(2 × 4), which has higher kinetic energy than the bulk emission, arises from the third-layer P atoms and that the second P 2p SCLS, which has lower kinetic energy than the bulk, arises from the top-layer P atoms. Similar In 4d SCLSs are found on the clean and Bi-stabilized InP(1 0 0)(2 × 4) surfaces, indicating that these shifts contain contributions of the In atoms that lie in the second and/or fourth layers. In addition to this, the results improve our understanding of the atomic structure of the Bi/InP(1 0 0)(2 × 4) surface and lead to refined surface models which include Bi-Bi and Bi-P dimers.  相似文献   

15.
Homoepitaxial growth of Au on Bi-covered Au(1 1 1) was studied at room temperature using reflection high-energy electron diffraction (RHEED) and Auger electron spectroscopy (AES). From observations of RHEED it is found that the Au(1 1 1) (23 × 1) reconstruction structure changes to a (1 × 1) by about 0.16-0.5 ML deposition of Bi and to a (2√3 × 2√3)R30° by about 1.0 ML deposition of Bi, respectively. The surface morphology evolution by Bi deposition leads to a change of Au homoepitaxial growth behavior from layer-by-layer to step flow. This indicates that the surface diffusion distance of Au atoms on the Bi-precovered (1 × 1) and (2√3 × 2√3)R30° surfaces is longer than that on the Au(1 1 1) (23 × 1) clean surfaces. A strong surface segregation of Bi was found at top of surface. It is concluded that Bi atoms acted as an effective surfactant in the Au homoepitaxial growth by promoting Au intralayer mass transport.  相似文献   

16.
Jeong-Young Ji 《Surface science》2007,601(7):1768-1774
PH3 adsorption on Si(1 1 1)-7 × 7 was studied after various exposures between 0.3 and 60 L at room temperature by means of scanning tunneling microscopy (STM). PH3-, PH2-, H-reacted, and unreacted adatoms can be identified by analyzing empty-state STM images at different sample biases. PHx-reacted rest-atoms can be observed in empty-state STM images if neighboring adatoms are hydrogen terminated. Most of the PH3 adsorbs dissociatively on the surface, generating H- and PH2-adsorbed rest-atom and adatom sites. Dangling-bonds at rest-atom sites are more reactive than adatom sites and the faulted half of the 7 × 7 unit cell is more reactive than the unfaulted half. Center adatoms are overwhelmingly preferred over corner adatoms for PH2 adsorption. The saturation P coverage is ∼0.18 ML. Annealing of PH3-reacted 7 × 7 surfaces at 900 K generates disordered, partially P-covered surfaces, but dosing PH3 at 900 K forms P/Si(1 1 1)- surfaces. Si deposition at 510 K leaves disordered clusters on the surface, which cannot be reordered by annealing up to 800 K. However, annealing above 900 K recreates P/Si(1 1 1)- surfaces. Surface morphologies formed by sequential rapid thermal annealing are also presented.  相似文献   

17.
The adsorption of molecular oxygen on the c(2 × 8) reconstruction of quenched Si(1 1 1) surfaces has been studied at the atomic scale using scanning tunneling microscopy (STM) at room temperature (RT). It has been found that clean well reconstructed c(2 × 8) adatoms do not react with O2 molecules but that a limited oxidation can start where adatom sites arranged in reconstructed structures are present. Comparison between O2 adsorption on Si(1 1 1)-c(2 × 8) and Si(1 1 1)-7 × 7 reconstructions coexisting on the same quenched silicon surface has been carried out in detail. For each atomic site present on the surface the variation of reacted sites with exposure has been measured. For low O2 exposures, bright and dark oxygen induced sites appear on the Si(1 1 1)-7 × 7, while Si(1 1 1)-c(2 × 8) does not oxidized at all. At high O2 exposures, large oxidation areas have spread on the 7 × 7 reconstruction, preferentially on the faulted halves of the unit cell, and smaller oxidation areas induced by topological defects have grown all around clean un-reacted c(2 × 8) regions.  相似文献   

18.
The adsorption of Pd, Ag and Au atoms on a porous silica film on Mo(1 1 2) is investigated by scanning tunneling microscopy and density functional theory. While Pd atoms are able to penetrate the holes in the silica top-layer with virtually no barrier, Ag atoms experience an intermediate barrier value and Au atoms are completely unable to pass the oxide surface. The penetration probability does not correlate with the effective size of the atoms, but depends on their electronic structure. Whereas Pd with an unoccupied valence s-orbital has a low penetration barrier, Ag and Au atoms with occupied s-states experience a substantial repulsion with the filled oxide states, leading to a higher barrier for penetration. In the case of Ag, the barrier height can be temporally lowered by promoting the Ag 5s-electron into the support. The Mo-supported silica film can thus be considered as a primitive form of an atomic sieve whose selectivity is controlled by the electronic structure of the adatoms.  相似文献   

19.
The adsorption of calcium (Ca) atoms on a Cu(0 0 1) surface has been studied by low-energy electron diffraction (LEED) at 130, 300 and 400 K. It is found that a (4 × 4) was the only LEED pattern appeared at 400 K while a quasi-hexagonal structure was formed in a wide range of submonolayer coverage at 130 K. At 300 K, the (4 × 4) LEED spots were broad and weak. The (4 × 4) structure formed at 400 K was determined by a tensor LEED I-V analysis. It is a new-type of surface alloys consisting of five substitutional Ca atoms, nine surface Cu atoms, and two atomic vacancies in the unit cell. In spite of a quite large size-difference between Ca (3.94 Å) and Cu (2.55 Å) atoms, all Ca atoms are located at the substitutional sites. Among surface alloys so far reported, the atomic size ratio between Cu and Ca in the (4 × 4), 1.54, is the largest. Optimized structural parameters reveal that large lateral displacements of surface Cu atoms, being enabled by the appearance of the vacancies, allow the formation of the (4 × 4) structure.  相似文献   

20.
The impingement and interdiffusion of adsorbed Pb and Bi layers spreading from separated 3D pure bulk sources on Cu(1 0 0) has been studied, at T = 513 K, by in situ scanning Auger microscopy. When the leading edges of the pure Pb and Bi diffusion profiles impinge, they both consist of low-coverage lattice gas surface alloyed phases. In these low-coverage phases, Pb displaces surface alloyed Bi and the point of intersection of the profiles drifts towards the Bi source. These features lead to the conclusion that Pb atoms are more strongly bound at surface alloyed sites in Cu(1 0 0) than Bi atoms. Once the total coverage (Pb + Bi) on the substrate reaches about one monolayer, Pb and Bi are dealloyed from the substrate, and the interdiffusion profiles become essentially symmetric. Pb and Bi mix in all proportions, with an interdiffusion coefficient of ∼10−13 m2/s. This is considerably smaller than the self-diffusion coefficients previously observed for pure Pb and Bi in their respective high-coverage phases, indicating that the mechanism of interdiffusion is different from that of self-diffusion. As interdiffusion proceeds, the point of intersection of the Pb and Bi profiles reverses its drift direction, leading to the conclusion that binding of Bi atoms to the Cu(1 0 0) substrate is stronger than that of Pb atoms in the highest-coverage surface dealloyed layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号