首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 623 毫秒
1.
G.J. Xu 《Surface science》2005,577(1):77-85
Halogen molecules dissociatively chemisorb on Si(1 0 0)-(2 × 1), and the bonding structures that they adopt can be elucidated with scanning tunneling microscopy. Of the Cl, Br, and I group, Cl has the highest single atom diffusion barrier, and both single and paired adatoms are observed at 295 K. The barrier is smaller for Br, and the adatoms can interrogate the surface until they form pairs, which are then immobile, or are trapped at C-type defects. The barrier is smallest for I, allowing the formation of pairs and trapped states, but the pairs are mobile at ambient temperature. Their motion is thermally activated, the events are random, and the diffusivities along and across the dimer row are ∼0.42 and ∼0.17 Å2/s at 295 K. The respective energy barriers for pairwise diffusion are ∼0.76 and ∼0.82 eV, assuming an attempt frequency of 1012 s−1. Studies over long times reveal that pairwise diffusion at low coverage is ultimately quenched by the increasing density of C-type defects, i.e. the increasing amounts of dissociated H2O.  相似文献   

2.
V. Lavalley 《Surface science》2007,601(23):5424-5432
First and original results are reported regarding the surface evolution of two kinds of oxide film after covalent grafting and hybridization of hairpin oligonucleotide probes. These hairpin probes were monolabelled with a 1.4 nm gold nanoparticle. One kind of oxide film was rough Sb doped SnO2 oxide film and the other kind was smooth SiO2 film. Same process of covalent grafting, involving a silanization step, was performed on both oxide surfaces. Atomic force microscopy (AFM) was used to study the evolution of each oxide surface after different steps of the process: functionalization, probe grafting and hybridization. In the case of rough SnO2 films, a slight decrease of the roughness was observed after each step whereas in the case of smooth SiO2 films, a maximum of roughness was obtained after probe grafting. Step height measurements of grafted probes could be performed on SiO2 leading to an apparent thickness of around 3.7 ± 1.0 nm. After hybridization, on the granular surface of SnO2, by coupling AFM with SEM FEG analyses, dispersed and well-resolved groups of gold nanoparticles linked to DNA duplexes could be observed. Their density varied from 6.6 ± 0.3 × 1010 to 2.3 ± 0.3 × 1011 dots cm−2. On the contrary, on smooth SiO2 surface, the DNA duplexes behave like a dense carpet of globular structures with a density of 2.9 ± 0.5 × 1011 globular structures cm−2.  相似文献   

3.
Water-soluble CdSe quantum dots (QDs) were synthesized using mercaptosuccinic acid (MSA) as a stabilizer. The growth process and characterization of CdSe quantum dots were determined by transmission electron microscopy (TEM), X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, Ultraviolet-visible (UV-vis) spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy. Results demonstrated the MSA-capped CdSe QDs were highly crystalline and possessed good optical properties. Further, the resulting products could be used as fluorescent probes to detect Cu2+ ions in physiological buffer solution. The response was linearly proportional to the concentration of Cu2+ ion in the range 2×10−8- 3.5×10−7 mol L−1 with a detection limit of 3.4 nmol L−1.  相似文献   

4.
The interaction between the (1 0 0) surface of SnTe single crystal and molecular oxygen was studied by means of X-ray photoelectron spectroscopy (XPS). Analysis of the obtained spectra shows that the mechanism of surface oxidation does not change in the range of oxygen exposure 108-1013 L. During the oxidation an additional component shifted 1.1 eV towards higher binding energies appears in the Sn 3d spectra. The Te 3d5/2 spectra fitting reveals two additional components with binding energies close to Te0 and Te+4. The dependence of the additional components fraction in both Sn 3d and Te 3d5/2 spectra on the oxygen exposure is semi-logarithmic. On the base of the experimental data two possible mechanisms are proposed.  相似文献   

5.
This paper presents investigation of impact of high-energy ion-irradiation on properties of light emitting porous silicon (PS) through photoluminescence (PL) spectroscopy. Irradiation was performed with 100 MeV Au+7 ions from a pelletron accelerator at ion doses in 1010-1014 cm−2 range. The effect was associated with a blueshift (∼40 nm) and an enhancement of the PL intensity, in general. The efficiency and stability of PL with respect to ambients was seen to be relatively improved. The PL properties of PS were found to be stable against low to medium dose irradiation (<1013 cm−2), whereas, higher dose led to further degradation of the optical properties. The effects have been explained in terms of a decrease in the non-radiative recombination probability of electron-hole pairs due to chemical restructuring of the surface and a reduced crystallite size as a result of irradiation.  相似文献   

6.
In order to investigate the allotropic effect on ripple pattern formation, highly oriented pyrolytic graphite (HOPG) and single crystalline diamond were irradiated with 10-200 keV Xe+ at an incident angle of 60° with respective to the surface normal. The irradiation fluence was 2 × 1017 cm−2 for all irradiations. Ripple patterns were observed on both HOPG and diamond surfaces. However, large differences in ripple wavelengths, amplitudes and surface roughnesses between HOPG and diamond were recognized. The reason for these differences is discussed.  相似文献   

7.
We have studied the surface dynamics of a double-strand decanucleotide (HS-10ATL) with 10 adenine-thymine base pairs linked to a Au(1 1 1)-electrode surface via a hexamethylene thiol linker. The study is based on a combination of voltammetry, interfacial capacitance data, electrochemical in situ scanning tunnelling microscopy, and X-ray photoelectron spectroscopy. The thymine bases of the oligonucleotide are connected to furanoses locked in a C3′-endo configuration called LNA (locked nucleic acid). Hybridization in solution is effected prior to linking to the Au(1 1 1)-surface. The melting point of the linker-free locked decanucleotide, 10ATL is >63 °C. However, voltammetric reductive desorption of the adsorbed thiol-modified double-strand decanucleotide, HS-10ATL, gives almost the same charge as single-strand HS-10A, 29 ± 3 and 27 ± 5 μC cm−2, respectively. In situ STM after HS-10ATL-immobilization also gives images showing highly ordered domains, virtually indistinguishable from those of immobilized HS-10A. X-ray photoelectron spectroscopy gives an N/P ration of 5.0 for HS-10ATL in line with the expected value for single-strand HS-10A (5.0).All three sets of data suggest that HS-10ATL hybridized in solution is significantly dissociated on binding to the Au(1 1 1)-electrode surface. This points to an adsorption mechanism in which a stable high density of Au-S bonds is achieved but at the expense of significant unzipping of the more voluminous duplex form.  相似文献   

8.
The kinetics of ammonia oxidation with oxygen have been investigated in the 10−5 and 10−4 mbar range on Pt(5 3 3) and Pt(4 4 3). Only N2 and NO but no N2O were detected as reaction products. The dependence of product formation on temperature and on the partial pressures of the reactants has been studied under steady state conditions. The reactive sticking coefficients were determined under reaction conditions with sreac of ammonia reaching nearly 0.2. The Pt(5 3 3) surface was found to be catalytically more active than Pt(4 4 3) by a factor of 2-4.  相似文献   

9.
Pulsed laser deposited ZnS bare and SnO2 coated ultra thin films were subjected to prolonged electron beam bombardment with 2 keV energy and a steady 44 mA/cm2 current density, in 1 × 10−6 Torr O2 pressure backfilled from a base pressure of 3 × 10−9 Torr at room temperature. Auger electron spectroscopy (AES) was used to monitor changes of the surface chemical composition of both the bare and coated phosphor films during electron bombardment. Degradation was manifested by the decrease of sulphur and accumulation of oxygen on the surface of the bare phosphor. However, with the SnO2 coating this phenomenon was delayed until the protective SnO2 was depleted on the surface through dissociation and reduction.  相似文献   

10.
Scanning tunneling microscopy luminescence (STML) was induced from the nanometer scale surfaces of cleaved n-type and p-type GaAs(1 1 0) wafers by using of an ITO-coated optical fiber probe in an ultrahigh-vacuum chamber. The STML from n-type GaAs(1 1 0) surface was induced under negative sample bias when the applied bias exceeds a threshold voltage around −1.5 V. Whereas the STML from p-type GaAs(1 1 0) surface was induced under positive sample bias when the applied bias exceeds a threshold voltage around +1.5 V. The excitation energies at the threshold voltages are consistent with the band gap of GaAs (1.42 eV) at 295 K. The typical quantum efficiencies for n-type and p-type GaAs are about 3 × 10−5 and 2 × 10−4 photons/electron, respectively. The observed STML from are attributed to a radiative recombination of electron-hole pairs generated by a hole injection for n-type GaAs under negative sample bias and an electron injection for p-type GaAs under positive sample bias, respectively.  相似文献   

11.
Jinyi Han 《Surface science》2006,600(13):2752-2761
The interaction of O2 with Pd(1 1 1), Pd(1 1 0) and Pd(1 0 0) was studied in the pressure range 1-150 Torr by the techniques of temperature programmed decomposition (TPD), Auger electron spectroscopy (AES) and low energy electron diffraction (LEED). The oxidation of Pd was rate-determined by oxygen diffusion into Pd metal followed by the diffusion into PdO once the bulk oxide layer was formed. The dissolution of oxygen atoms into Pd metal followed the Mott-Cabrera model with diffusion coefficient 10−16 cm2 s−1 at 600 K and activation energy of 60-85 kJ mol−1. The bulk oxide phase was formed when a critical oxygen concentration was reached in the near-surface region. The formation of PdO was characterized by a decrease in the oxygen uptake rate, the complete fading of the metallic Pd LEED pattern and an atomic ratio O/Pd of 0.15-0.7 as measured by AES. The diffusion of oxygen through the bulk oxide layer again conformed to the Mott-Cabrera parabolic diffusion law with diffusion coefficient 10−18 cm2 s−1 at 600 K and activation energy of 111-116 kJ mol−1. The values for the diffusion coefficient and apparent activation energy increased as the surface atom density of the single crystals increased.  相似文献   

12.
Jinyi Han 《Surface science》2006,600(13):2730-2744
The interaction of O2 with Pd single crystals including Pd(1 1 1), Pd(1 1 0) and Pd(1 0 0) in the pressure range 1-150 Torr was studied using scanning tunneling microscopy (STM). The Pd single crystal surface morphologies were determined by the oxidation conditions: O2 pressure, exposure time and treatment temperature. Oxygen dissolution into Pd metal followed by the formation of bulk oxide was observed. The dissolution of oxygen resulted in the increase of the inter-planar spacing between the first two layers, 9-14% increase after an exposure of Pd(1 1 1) to 10-25 Torr O2 at 600 K for 10 min, and 10-20% increase after exposing Pd(1 1 0) and Pd(1 0 0) to 1 Torr O2 at 600 K for 10 min. Elongated or semi-spherical oxide agglomerates along the steps nucleated and grew on both Pd(1 1 0) and Pd(1 0 0) surfaces after oxidation in 5-25 Torr O2 at 600 K. When bulk PdO was formed, the single crystal surface was covered with semi-spherical agglomerates 2-4 nm in size, which tended to aggregate to form a “cauliflower-like” structure. The single crystal surface area also increased during oxidation.  相似文献   

13.
Rubrene single crystals with pentagon, hexagon, lath-like, and needle-like shape were grown by physical vapor transport. The morphology of surface and transect of rubrene crystals was characterized by optical microscope, atomic force microscope and scanning electron microscope. Monolayers and layer-like structures were observed on the rubrene crystal surface and in the interior of single crystals, respectively. Size and quality of rubrene crystals could be controlled by tuning growth parameters including source temperature, deposition temperature, and growth time. Compared with the emission peak at 555 nm of rubrene solution with the concentration of 10−5 M, the emission peak of rubrene single crystals is at 649 nm with a shift of 94 nm. Hexagon etching pits with typical ladder-like structure were also observed on the (1 0 0) crystal plane and the density of dislocation lines is about 103 cm−2.  相似文献   

14.
Interaction of thionine with double stranded and single stranded calf thymus DNA has been studied by absorbance, fluorescence, competition dialysis, circular dichroism and isothermal titration calorimetry. Binding to the native double stranded DNA conformation induced strong quenching in fluorescence spectrum of thionine. Linear Scatchard plots indicated the binding to be of one type and the affinity values evaluated to be of the order of 105 M−1 with double stranded DNA. Fluorescence quenching was much weaker with single stranded DNA and the binding affinity was about one order lower. Ferrocyanide quenching studies revealed that the fluorescence emission of dye molecules bound to the double stranded DNA was quenched much less compared to those bound to the single stranded DNA. Furthermore, there was significant emission polarization for the bound dye molecules and strong energy transfer from the DNA base pairs to the dye molecules indicating intercalative binding to ds DNA. Salt dependence of the binding phenomenon revealed that electrostatic forces played a significant role in the binding process. The intercalation of the dye molecules to double stranded DNA and simple stacking to single strands was proved from these fluorescence techniques. Support to the fluorescence results have been derived from absorption, circular dichroic and dialysis results. Calorimetric studies suggested that the binding to ds DNA conformation was both enthalpy and entropy favoured while that to ss DNA was predominantly entropy favoured.  相似文献   

15.
Using cherry stones, the preparation of activated carbon has been undertaken in the present study by chemical activation with potassium hydroxide. A series of KOH-activated products was prepared by varying the carbonisation temperature in the 400-900 °C range. Such products were characterised texturally by gas adsorption (N2, −196 °C), mercury porosimetry, and helium and mercury density measurements. FT-IR spectroscopy was also applied. The carbons prepared as a rule are microporous and macroporous solids. The degree of development of surface area and porosity increases with increasing carbonisation temperature. For the carbon heated at 900 °C the specific surface area (BET) is 1624 m2 g−1, the micropore volume is 0.67 cm3 g−1, the mesopore volume is 0.28 cm3 g−1, and the macropore volume is 1.84 cm3 g−1.  相似文献   

16.
Titanium oxide (TiO2) and zirconium oxide (ZrO2) thin films have been deposited on modified Si(1 0 0) substrates selectively by metal-organic chemical vapor deposition (MOCVD) method using new single molecular precursor of [M(OiPr)2(tbaoac)2] (M=Ti, Zr; tbaoac=tertiarybutyl-acetoacetate). For changing the characteristic of the Si(1 0 0) surface, micro-contact printing (μCP) method was adapted to make self-assembled monolayers (SAMs) using an octadecyltrichlorosilane (OTS) organic molecule which has -CH3 terminal group. The single molecular precursors were prepared using metal (Ti, Zr) isopropoxide and tert-butylacetoacetate (tbaoacH) by modifying standard synthetic procedures. Selective depositions of TiO2 and ZrO2 were achieved in a home-built horizontal MOCVD reactor in the temperature range of 300-500 °C and deposition pressure of 1×10−3-3×10−2 Torr. N2 gas (5 sccm) was used as a carrier gas during film depositions. TiO2 and ZrO2 thin films were able to deposit on the hydrophilic area selectively. The difference in surface characteristics (hydrophobic/hydrophilic) between the OTS SAMs area and the SiO2 or Si-OH layer on the Si(1 0 0) substrate led to the site-selectivity of oxide thin film growth.  相似文献   

17.
The deposition of amorphous indium zinc oxide (IZO) thin films on glass substrates with n-type carrier concentrations between 1014 and 3 × 1020 cm−3 by sputtering from single targets near room temperature was investigated as a function of power and process pressure. The resistivity of the films with In/Zn of ∼0.7 could be controlled between 5 × 10−3 and 104 Ω cm by varying the power during deposition. The corresponding electron mobilities were 4-18 cm2 V−1 s−1.The surface root-mean-square roughness was <1 nm under all conditions for film thicknesses of 200 nm. Thin film transistors with 1 μm gate length were fabricated on these IZO layers, showing enhancement mode operation with good pitch-off characteristics, threshold voltage 2.5 V and a maximum transconductance of 6 mS/mm. These films look promising for transparent thin film transistor applications.  相似文献   

18.
We used STM to study the conductivity of 32 nucleotide long DNA molecules chemically attached to a gold surface. Two oligonucleotides containing all four base types namely G, A, C, T, one single stranded and one double helical, all showed conductance data significantly higher than DNA containing only T and A that were either single stranded d(T32) or double helical d(T32).d(A32) in confirmation. Within each sequence group, the conductivity of the double helical form was always higher than that of the single strand. We discuss the impact of structure, particular base stacking and affinity to the phase transition.   相似文献   

19.
A study of silicon modification induced by a high intensity picosecond Nd:YAG laser, emitting at 1064 nm, is presented. It is shown that laser intensities in the range of 5 × 1010-0.7 × 1012 W cm−2 drastically modified the silicon surface. The main modifications and effects can be considered as the appearance of a crater, hydrodynamic/deposition features, plasma, etc. The highest intensity of ∼0.7 × 1012 W cm−2 leads to the burning through a 500 μm thick sample. At these intensities, the surface morphology exhibits the transpiring of the explosive boiling/phase explosion (EB) in the interaction area. The picosecond Nd:YAG laser-silicon interaction was typically accompanied by massive ejection of target material in the surrounding environment. The threshold for the explosive boiling/phase explosion (TEB) was estimated to be in the interval 1.0 × 1010 W cm−2 < TEB ≤ 3.8 × 1010 W cm−2.  相似文献   

20.
ZrO2 thin films were deposited at various oxygen partial pressures (2.0 × 10−5-3.5 × 10−1 mbar) at 973 K on (1 0 0) silicon and quartz substrates by pulsed laser deposition. The influence of oxygen partial pressure on structure, surface morphology and optical properties of the films were investigated. X-ray diffraction results indicated that the films are polycrystalline containing both monoclinic and tetragonal phases. The films prepared in the oxygen partial pressures range 2.0 × 10−5-3.5 × 10−1 mbar contain nanocrystals of sizes in the range 54-31 nm for tetragonal phase. The peak intensity of the tetragonal phase decreases with the increase of oxygen partial pressures. Surface morphology of the films examined by AFM shows the formation of nanostructures. The RMS surface roughness of the film prepared at 2.0 × 10−5 mbar is 1.3 nm while it is 3.2 nm at 3.5 × 10−1 mbar. The optical properties of the films were investigated using UV-visible spectroscopy technique in the wavelength range of 200-800 nm. The refractive index is found to decrease from 2.26 to 1.87 as the oxygen partial pressure increases from 2.0 × 10−5 to 3.5 × 10−1 mbar. The optical studies show two different absorption edges corresponding to monoclinic and tetragonal phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号