首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(E)-O-protected-2-trifluoromethyl-1-bromo-1-substituted allylic alcohol reacted with terminal alkynes under Sonogashira reaction condition to give the corresponding (E)-2-en-4-ynoic alcohol derivatives, which was further converted to the corresponding 4-trifluoromethylfuran derivatives via a sequential deprotection-annulation reaction in moderate to excellent yields.  相似文献   

2.
PdCl2(CH3CN)2 (10 mol %) catalyzed reactions of non-3-ene-2,8-diols 1 and 2 gave 2,6-disubstituted tetrahydropyrans 3 and 4 in excellent yields with high diastereoselectivities (>20:1). Intramolecular cyclizations of the hydroxy nucleophile to the chiral allylic alcohol take place efficiently under mild conditions. A new stereogenic center is generated on the tetrahydropyran ring by 1,3-chirality transfer from the chiral allylic alcohol via a syn-SN2' type process. Cis tetrahydropyran 3E was formed from syn-2,8-diols 1a and 2a, and trans tetrahydropyran 4E was formed from anti-2,8-diol 1b, stereospecifically. Cis tetrahydropyran bearing a cis alkene 3Z was obtained from 2b at -40 degrees C, while 4E was formed from 2b in the presence of catalytic amount of water at -40 degrees C. The face selectivity of these cyclizations can be rationalized by taking a favorable conformation of the intermediary Pd pi-complex with allylic alcohols, escaping the allylic strain and 1,3-diaxial interactions. A stereocontrolled synthesis of optically pure 2-alkenyl-6-methyltetrahydropyran 17 was achieved efficiently in four steps from 6-silyloxy-1-heptyne 13 with an aldehyde and included asymmetric alkynylation, partial reduction of alkyne, deprotection of the silyl group, and the stereospecific cyclization.  相似文献   

3.
The first total synthesis of the marine dolabellane diterpene (+)-4,5-deoxyneodolabelline (1) has been accomplished. The highly efficient approach is characterized by the convergent assembly of dihydropyrans 2ab and cyclopentylsilanes 3ab. Allylic silane 3a was prepared from 2-methyl-2-cyclopentenone via a copper-catalyzed 1,4-addition followed by diastereoselective alkylation of the resulting enolate. A chemical resolution of racemic cyclopentanone 8 was effected by (S)-CBS-catalyzed borohydride reduction. Direct hydroxymethylation of the enantioenriched ketone 8 to form allylic alcohol 14 was achieved by a Stille palladium-catalyzed cross-coupling from the cyclopentenyl triflate 13. Treatment of the corresponding allylic phosphate 15 with trimethylsilylcopper reagent provided for displacement with allylic transposition yielding the exocyclic allylsilane 3a with excellent diastereoselectivity. Dihydropyrans 2a and 2b were prepared from optically pure acyclic acetals via ring-closing metathesis. Coupling of 3a and 2a or 2b via the carbon-Ferrier protocol gave trans-2,6-disubstituted dihydropyrans 30 and 35 with complete stereoselectivity. Vanadium-based pinacol coupling reactions were explored for closure of the medium-sized carbocycle to yield syn-diol 33. X-ray diffraction studies of the monobenzoate 34 have provided unambiguous stereochemical assignments. Substantial ring strain accounted for the lack of alkene products typical of reductive elimination using TiCl(3) and zinc-copper couple (McMurry) conditions leading to 37. Finally, the natural product 1 was obtained via Swern oxidation of the diol 37.  相似文献   

4.
A formal asymmetric organocatalytic aminohydroxylation reaction of enones has been achieved via an aziridination-double S(N)2 sequence. As a part of the reaction design, the generated amino alcohol products are isolated as the corresponding oxazolidinones in good yields and excellent stereoselectivities.  相似文献   

5.
The Pd/phosphine-catalyzed reaction of 1 with aryl bromides leads to the selective synthesis of either 6-aryl octahydrocyclopenta[b]pyrroles (3), the corresponding 5-aryl isomers 5, diarylamine 2, or hexahydrocyclopenta[b]pyrrole 4 depending on the structure of the phosphine ligand. These transformations are effective with a variety of different aryl bromides and provide 3-5 with excellent levels of diastereoselectivity (dr > or = 20:1). The changes in product distribution are believed to derive from the influence of Pd-catalyst structure on the relative rates of reductive elimination, beta-hydride elimination, alkene insertion, and alkene displacement processes in a mechanistically complex reaction. The effect of phosphine ligand structure on product distribution is described in detail, along with analysis of a proposed mechanism for these transformations.  相似文献   

6.
[reaction: see text] The Kishner reduction of 2-furylhydrazone gives 2-methylene-2,3-dihydrofuran as the major abnormal reduction product. 2-Methylene-2,3-dihydrofuran is an excellent ene in the carbonyl-ene reaction, reacting with a variety of aldehydes. Most notable was the asymmetric carbonyl-ene reaction of 2-methylene-2,3-dihydrofuran and decanal using Ti(OCH(CH3)2)4/(S)-BINOL to give the corresponding alcohol in 66% yield and 94% ee. The reaction of 2-methylene-2,3-dihydrofuran with 2 equiv of 1,4-benzoquinone unexpectedly gave a monoalkylated 1,4-hydroquinone/1,4-benzoquinone electron donor-acceptor complex.  相似文献   

7.
Preparation of bisbenzofuran-2-yl-methanone (1), the corresponding ketoxime 4, semicarbazone and thiosemicarbazone 3a and 3b, ether derivatives of the ketoximes 5a-j and the alcohol 2 are described. These substances have been prepared in excellent yields. All the synthesized compounds except 5i have been tested against five different microorganisms and some of them were found to be active against some of the species studied.  相似文献   

8.
A variety of ruthenium(II) catalyst precursors containing beta-aminophosphine ligands and a borohydride ligand were found to be active for a one-pot, tandem asymmetric Michael addition/H2-hydrogenation reaction to give the chiral alcohol in excellent diastereomeric excess. The most effective catalyst is 4b, containing the (S)-binap ligand and (R,R)-Pnor ligand, derived from (1S,2R)-norephedrine.  相似文献   

9.
A new asymmetric approach to the hydroxylactone (+)-(3aR,4R,6aS)-4-(hydroxymethyl)-3a,4-dihydro-3H-cyclopenta[b]furan-2(6aH)-one (1), a key synthetic building block for cis-1,2-disubstituted five-membered ring derivatives (i.e., isoprostanes, jasmonates, and clavulones), has been described. A remarkable control of the absolute and relative configuration of the three stereocenters was achieved. Thus, the use of the Trost's asymmetric allylic alkylation strategy secured highly enantioenriched (R)-3-(nitromethyl)cyclopent-1-ene (13), which was smoothly converted to (R)-cyclopent-2-enecarboxylic acid (15) in excellent yield and high enantiomeric purity (>98% ee). 6-exo-trig atom-transfer radical cyclizations of ((R)-cyclopent-2-enyl)methyl 2-iodoacetate (12) produced exclusively the desired cis-fused delta-lactone (4aR,7aR)-hexahydro-5-iodocyclopenta[c]pyran-3(1H)-one (11), which was subsequently elaborated to hydroxylactone 1 through a stereocontrolled Pd(II)-mediated lactonization reaction. En route to preclavulone A, a putative elusive intermediate in the biosynthesis of clavulones, the synthetic utility of compound 1 was demonstrated. The key feature in this synthesis was the installation of the lower side chain via the Knochel organozinc sp3-sp C-C coupling protocol.  相似文献   

10.
A highly efficient and practical optical resolution of anti head-to-head racemic coumarin dimer 7 has been achieved by molecular complexation with TADDOL, (-)-8, through a hydrogen bonding interaction to afford the corresponding two enantiomers, (-)- and (+)-7, in 70 and 75 % yields, respectively, with >99 % ee. Starting from enantiopure (-)-7, a new type of C2-symmetric bisphosphine ligand (S,S,S,S)-3 with a cyclobutane backbone has been synthesized in good yield by facile transformations. The asymmetric induction efficiency of these chiral bisphosphine ligands in Pd-catalyzed asymmetric allylic substitution reactions was evaluated. Under the experimental conditions, the allylic substitution products could be obtained in excellent yields (up to 99 %) and enantioselectivities (up to 98.9 % ee). By taking advantage of the high enantioselectivity of this catalytic reaction and the easily derivable carboxylate groups on the cyclobutane backbone of ligand (S,S,S,S)-3, a new type of analogous ligand (S,S,S,S)-4 as well as the MeO-PEG-supported soluble ligand (S,S,S,S)-5 (PEG=polyethylene glycol) have also been synthesized and utilized in asymmetric allylic substitution reactions. In particular, the MeO-PEG supported (S,S,S,S)-5 b had a synergistic effect on the enantioselectivity of the reaction compared with its nonsupported precursor (S,S,S,S)-4 c, affording the corresponding allylation products 14 a and 14 b with excellent enantioselectivities (94.6 and 97.2 % ee, respectively). Moreover, the Pd complex of (S,S,S,S)-5 b could easily be recovered and recycled several times without significant loss of enantioselectivity and activity in the allylic substitution reactions.  相似文献   

11.
A wide range of NCN pincer palladium complexes, [4-tert-butyl-2,6-bis(N-alkylimino)phenyl]chloropalladium (alkyl = n-butyl, benzyl, cyclohexyl, tert-butyl, adamantyl, phenyl, 4-methoxyphenyl), were readily prepared from trans-(4-tert-butyl-2,6-diformylphenyl)chlorobis(triphenylphosphine)palladium via dehydrative introduction of the corresponding alkylimino ligand groups (ligand introduction route) in excellent yields (71-98%). NMR studies on this route for forming pincer complexes revealed the intermediacy of [4-tert-butyl-2,6-bis(N-alkylimino)phenyl]chlorobis(triphenylphosphine)palladium which is in equilibrium with the corresponding NCN pincer complexes via coordination/dissociation of the intramolecular imino groups and triphenylphosphine ligands. A series of chiral NCN pincer complexes bearing pyrroloimidazolone units as the trans-chelating donor groups, [4-tert-butyl-2,6-bis{(3R,7aS)-2-phenylhexahydro-1H-pyrrolo[1,2-c]imidazol-1-on-3-yl}phenyl]chloropalladium, were also prepared from the same precursor via condensation with proline anilides in high yields. The catalytic properties of the NCN imino and the NCN pyrroloimidazolone pincer palladium complexes were examined in the Heck reaction and the asymmetric Michael reaction to demonstrate their high catalytic activity and high enantioselectivity.  相似文献   

12.
Shafi SM  Chou J  Kataoka K  Nokami J 《Organic letters》2005,7(14):2957-2960
[reaction: see text] A direct and highly stereoselective (E)-4-benzyloxybut-2-enylation of aldehydes was successfully carried out to give 5-benzyloxyhomoallylic alcohol (11) via an allyl-transfer reaction using a chiral allyl donor (10). The chiral allyl donor (10) was prepared by catalytic Sharpless asymmetric epoxidation of 3-methylbut-2-en-1-ol, followed by a stereospecific vinyl Grignard reaction of the epoxide in the presence of CuBr and selective benzylation of the primary alcohol of diol.  相似文献   

13.
Synthesis of optically active vomifoliol and roseoside stereoisomers   总被引:2,自引:0,他引:2  
A synthesis of optically active vomifoliol stereoisomers 1-4 and their glucosides, roseoside stereoisomers 5-8, was accomplished via alpha-acetylenic alcohol 11a or 11b effectively prepared by an asymmetric transfer hydrogenation of alpha,beta-acetylenic ketone 10. Simultaneous separation of these stereoisomers by HPLC was also performed.  相似文献   

14.
A novel and efficient synthetic route to ceramide 1a and skeleton backbone modified ceramide analogues 1b,c is reported. The syntheses utilize osmium-catalyzed asymmetric dihydroxylation of (E)-alpha, beta-unsaturated ester 5a-c as the chiral induction step, with the desired configurations in the products 1a-c, 2a, and 13 being generated by regioselective azide substitution at the alpha position of alpha,beta-dihydroxyesters 6a-c via a cyclic thionocarbonate intermediate. Azido esters 10a-c are converted to the corresponding ceramides 1a-c by a sequence of azide reduction, N-acylation, ester reduction (NaBH(4)/LiBr), and Birch reduction of the triple bond (Li, EtNH(2)). These seven- to eight-step syntheses afford the target compounds 1a-c with excellent stereocontrol and in 30-42% overall yields. Furthermore, propargylic alpha-azido-beta-hydroxyester 10a is converted to D-erythro-sphingosine 2a via simultaneous reduction of the triple bond, azido, and ester functional groups with LiAlH(4), providing a highly concise and practical four-step synthesis of this key naturally occurring sphingolipid. The L-erythro stereoisomers are also available in high enantiomeric purity by the method described herein.  相似文献   

15.
Recently,muchefforthasbeenmadeinthedevelopmentofgenerallyapplicableorganicsynthesisof5hydroxy2(5H)furanone1duetoitsessentialstructureentityinthesynthesisofsomebiologicallyactivenaturalproductsanditsapplicationasausefulintermediateinorganicsynthesis[1—3].Co…  相似文献   

16.
An asymmetric synthesis of the antibiotic (+)-negamycin (1) has been achieved, starting from commercially available (5R,6S)-4-(benzyloxycarbonyl)-5,6-diphenyl-2,3,5,6-tetrahydro-4H-1,4-oxazin-2-one (2). The synthesis involved the stabilized Wittig olefination of the lactone carbonyl group of 2 and subsequent asymmetric hydrogenation to generate the corresponding all-syn oxazine 4 with excellent diastereoselectivity. Conversion of 4 into beta-alkoxy imine 7 and subsequent CeCl3-promoted chelation-controlled allylation of 7 generated the corresponding homoallylamine 8 with good diatereoselectivity, which was readily converted into (+)-negamycin (1) in 25% overall yield over 11 steps.  相似文献   

17.
A series of chiral 3-aryl-4-phosphonobutyric acid esters were synthesized in high enantioselectivities (93-98% ee) via the Rh-catalyzed asymmetric hydrogenation of the corresponding 3-aryl-4-phosphonobutenoates using a P-stereogenic BoPhoz-type phosphine-aminophosphine ligand. The methodology has been successfully applied to the asymmetric synthesis of a potential GABA(B) antagonist, (R)-phaclofen, in high enantioselectivity.  相似文献   

18.
Asymmetric syntheses of (2S,3S)-3-(tert-butoxycarbonyl)-2-piperidinecarboxylic acid (1b), (3R,4S)-4-(tert-butoxycarbonyl)-3-piperidinecarboxylic acid (2b), and their corresponding N-Boc and N-Cbz protected analogues 8a,b and 17a,b are described. Enantiomerically pure 1b has been synthesized in five steps starting from L-aspartic acid beta-tert-butyl ester. Tribenzylation of the starting material followed by alkylation with allyl iodide using KHMDS produces the key intermediate 5a in a 6:1 diastereomeric excess. Upon hydroboration, the alcohol 6a is oxidized, and the resulting aldehyde 7 is subjected to a ring closure via reductive amination, providing 1b in an overall yield of 38%. Optically pure 2b has been synthesized beginning with N-Cbz-beta-alanine. The synthesis involves the induction of the first stereogenic center using Evans's chemistry and sequential LDA-promoted alkylations with tert-butyl bromoacetate and allyl iodide. Further elaboration by ozonolysis and reductive amination affords 2b in an overall yield of 28%.  相似文献   

19.
A novel and convenient route to the asymmetric synthesis of 2,3-diamino acids via Mannich reaction of iminolactones 1a and 1b with N-protected imines has been achieved in good yields (up to 95%) and high diastereoselectivity (dr: >99:1). Hydrolysis of the Mannich adducts under acidic conditions furnished the desired 3-aryl-2,3-diaminopropanoic acids in good yields (up to 85%) with excellent enantiomeric excesses (99% ee).  相似文献   

20.
Ke Cheng  Tiantian Fan  Jian Sun 《中国化学》2011,29(8):1669-1671
Easily accessible chiral phosphoric acid 1b has been applied as efficient organocatalyst for the asymmetric allylation of aldehydes with allyltrichlorosilane. In the presence of 20 mol% of 1b , the allylation of a broad range of aldehydes proceeded smoothly to give the corresponding homoallylic alcohol with up to 87% ee and 97% yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号