首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Durrani SM 《Talanta》2006,68(5):1732-1735
Thin films of tin oxide were deposited by electron beam evaporation. The effects of the electrode materials (Ag, Al, Au and Pt) and different electrode configurations on the CO-sensing of tin oxide thin films were investigated. The Pt and Au electrodes with bottom electrode configuration show much higher response than Ag and Al electrodes. The sensor response and recovery times have also been measured. The films were characterized using X-ray diffraction and X-ray photoelectron spectroscopy. All the films were found to be amorphous. It was found that the CO-sensing properties depend both on the electrode materials and configuration.  相似文献   

2.
Nanostructured Pd thin films are directly formed on polycrystalline Pt and Au substrates in the absence of hard and soft templates by using a cyclic potential sweep technique, which is confirmed by both SEM observation and their unusual cyclic voltammetric characteristics in H2SO4 solution. Interestingly, the bimetallic electrodes obtained after the deposition of ultrathin Pd films onto Pt and Au substrates display much higher catalytic activity towards the electro-oxidation of methanol than the bulk Pt electrode. Besides, it is found that the foreign metal substrate has great influence on the electro-catalytic behavior of the Pd films.  相似文献   

3.
本文利用欠电位沉积亚单层的Cu及Pt置换取代Cu的方法, 制备了具有不同表面元素组成的Pd/Pt二元合金电极(用Pd/Ptx表示, x指欠电位沉积Cu-Pt置换取代Cu过程的次数),并对其表面元素组成、氧还原性能进行了表征. 在控制欠电位沉积Cu的下限电位恒定(0.34 V)的前提下, 表面Pt/Pd的元素组成比通过重复欠电位沉积Cu及Pt置换取代Cu的次数(1~5次)来可控地调变. 光电子能谱(XPS) 以及红外光谱实验表明,Pd/Ptx电极表层区的Pt:Pd元素组成比随着Pt沉积次数增加而增加, 对Pd/Pt4电极, 在电极表层区约2~3 nm内的Pt/Pd的原子比大约是1:4,而最表层裸露Pd原子的比例仍在20%以上。循环伏安结果显示, 随着Pt沉积次数的增加(1-5次), Pd/Ptx电极表面越不易被氧化。氧还原测试结果显示随着Pt沉积次数的增加(1~4次), Pd/Ptx二元金属电极的氧还原活性依次增加, 经过第3次沉积后其氧还原活性已优于纯Pt,而经4次以上沉积,其氧还原活性基本不变。在其它反应条件相同条件的前提下, Pd/Pt4电极上氧还原的半波电位与纯Pt相比右移约25 mV。结合本文与文献的实验结果,我们初步认为Pd/Ptx二元金属体系氧还原性能改善主要源自表层Pd原子导致其邻近的Pt原子上含氧物种吸附能的降低.  相似文献   

4.
Electrochemical oxidation of freshly deposited Pd and its alloys with other noble metals (Au, Pt, Rh) was compared with the behavior of samples subjected to prior hydrogen absorption/desorption procedure. It was found that surface oxidation of hydrogen-treated Pd and Pd–Pt–Au deposits starts at lower potentials than on non-hydrided electrodes and is accompanied by a negative shift of surface oxide reduction peak. Pd and its alloys with Au, Pt and Rh after hydrogen treatment are also more resistant to electrochemical dissolution than freshly deposited samples.  相似文献   

5.
《Electroanalysis》2004,16(16):1318-1323
The electrochemical behavior of NO2 at Au/Nafion, Pt/Nafion and Pt‐Au/Nafion electrodes was investigated by using electrochemical and SEM methods, respectively. It was found that the Pt‐Au/Nafion electrode showed higher electrocatalytic activity than Pt/Nafion and Au/Nafion electrodes. The net current density of Au/Nafion electrode decayed significantly during the reaction, though it showed high initial value. Pt/Nafion and Pt‐Au/Nafion electrodes, on the contrary, showed good stability. A quantitative determination of NO2 concentration was carried out at Pt‐Au/Nafion electrode and a satisfactory linear relationship was found for the NO2 concentration in the range of 0–100 ppm.  相似文献   

6.
Bimetallic Pd-Au and Pt-Au and monometallic Pd, Pt, and Au films were prepared by physical vapor deposition. The resulting surfaces were characterized by means of XPS, AFM, and CO adsorption from the liquid phase (CH2Cl2) monitored by ATR-IR spectroscopy. CO adsorption combined with ATR-IR proved to be a very sensitive method for probing the degree of interdiffusion occurring at the interfaces whose properties were altered by variation of the Pd and Pt film thickness from 0.2 to 2 nm. Because no CO adsorption was observed on Au, the evaporation of Pt-group metals on Au allowed us to study the effect of dilution on the adsorption properties of the surfaces. At equivalent Pd film thickness, the evaporation of Au reduced the amount of adsorbed CO and caused the formation of 2-fold bridging CO, which was almost absent in monometallic surfaces. Additionally, the average particle size on Pd-Au surfaces was smaller than that on monometallic Pd surfaces. The results indicate that a Pd/Au diffuse interface is formed that affects the Pd particle size even more drastically than the simple decrease in Pd film thickness in monometallic surfaces. Pt-Au surfaces were less sensitive to CO adsorption, indicating that the two metals do not mix to a significant extent. The difference in the interfacial behavior of Pd and Pt in the bimetallic gold films is traced to the largely different Pd-Au and Pt-Au miscibility gaps.  相似文献   

7.
Core-shell Au-Pt nanoparticles were synthesized by using a seed growth method and characterized by transmission electron microscopy, X-ray diffraction, and UV-vis spectroscopy. Au(core)-Pt(shell)/GC electrodes were prepared by drop-coating the nanoparticles on clean glassy carbon (GC) surfaces, and their electrochemical behavior in 0.5 M H2SO4 revealed that coating of the Au core by the Pt shell is complete. The electrooxidation of carbon monoxide and methanol on the Au(core)-Pt(shell)/GC was also examined, and the results are similar to those obtained on a bulk Pt electrode. High quality surface-enhanced Raman scattering (SERS) spectra of both adsorbed CO and thiocyanate were observed on the Au(core)-Pt(shell)/GC electrodes. The potential-dependent SERS features resemble those obtained on electrochemically roughened bulk Pt or Pt thin films deposited on roughened Au electrodes. For thiocyanate, the C-N stretching frequency increases with the applied potential, yielding two distinctly different dnu(CN)/dE. From -0.8 to -0.2 V, the dnu(CN)/dE is ca. 50 cm(-1)/V, whereas it is 90 cm(-1)/V above 0 V. The bandwidth along with the band intensity increases sharply above 0 V. At the low-frequency region, Pt-NCS stretching mode at 350 cm(-1) was observed at the potentials from -0.8 to 0 V, whereas the Pt-SCN mode at 280 cm(-1) was largely absent until around 0 V and became dominant at more positive potentials. These potential-dependent spectral transitions were attributed to the adsorption orientation switch from N-bound dominant at the negative potential region to S-bound at more positive potentials. The origin of the SERS activity of the particles is briefly discussed. The study demonstrates a new method of obtaining high quality SERS on Pt-group transition metals, with the possibility of tuning SERS activity by varying the core size and the shell thickness.  相似文献   

8.
A comparative electrooxidation of Eg in the alkaline solution was investigated over Pt, Pd and Au nanoparticle-modified carbon-ceramic electrode. The kinetic parameters of Eg oxidation, i.e., Tafel slope and activation energy (E a), were determined on the modified electrodes. The lowest E a value of 8.9 kJ mol?1 was calculated on Pt|CCE. In continuation, the reaction orders with respect to the Eg and NaOH concentrations on Pd|CCE were found to be 0.4–0.2 and 0.6, respectively. An adsorption equilibrium constant (b) of 22.36 M?1 and the adsorption Gibbs energy change (ΔG°) of ?7.7 kJ mol?1 were obtained on Pd|CCE. The chronopotentiometry (CP) and chronoamperometry (CA) results showed that Pd|CCE and then Au|CCE have better performance stability than Pt|CCE for Eg electrooxidation. Additionally, the electrochemical impedance spectroscopy (EIS) suggested faster electron-transfer kinetics on Pt than that on the Pd and Au electrocatalysts.  相似文献   

9.
A simple electrochemical approach is developed to prepare reduced graphene oxide (RGO)-wrapped carbon fiber (CF) as a novel support for Pt–Au nanocatalysts. The obtained composite electrodes have been characterized by scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDX), thermal gravimetric analysis (TGA), and electrochemical methods. SEM images reveal that the Pt–Au nanoparticles deposited on RGO-wrapped CF (RGO/CF) electrode display smaller particle size and more uniform dispersion than those on the bare CF electrode. Cyclic voltammetry, linear sweep voltammetry, chronoamperometry, chronopotentiometry, Tafel plots, and electrochemical impedance spectroscopy (EIS) analyses demonstrate that the introduced RGO on CF electrode surface is beneficial to the dispersion of Pt–Au nanoparticles, as a consequence, to the enhancement of the electrocatalytic activity and the antipoisoning ability of Pt–Au towards formic acid electrooxidation.  相似文献   

10.
Electrooxidation of 2-propanol on Pt, Pd and Au in alkaline medium   总被引:1,自引:0,他引:1  
Pd and Au are investigated as electrocatalysts for 2-propanol oxidation and compared with the conventional catalyst of Pt in alkaline medium. The current density for 2-propanol oxidation on Pd electrode is much higher than that on Pt electrode. The onset potential for 2-propanol oxidation on Pd electrode is more negative compared with that on Pt electrode. The results show that Pd is a good electrocatalyst for 2-propanol oxidation and the activity for the electrooxidation of 2-propanol is higher than Pt and Au in alkaline medium. Pd has higher electrocatalytic activity and better stability for the electrooxidation of 2-propanol. The present study shows a promising choice of Pd as effective electrocatalyst for 2-propanol electrooxidation in alkaline medium.  相似文献   

11.
The structure and dynamics of the interfacial layers between the extremely pure air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate and Au(111) has been investigated using in situ scanning tunneling microscopy, cyclic voltammetry, electrochemical impedance spectroscopy, and atomic force microscopy measurements. The in situ scanning tunnelling microscopy measurements reveal that the Au(111) surface undergoes a reconstruction, and at -1.2 V versus Pt quasi-reference the famous (22 × √3) herringbone superstructure is probed. Atomic force microscopy measurements show that multiple ion pair layers are present at the ionic liquid/Au interface which are dependent on the electrode potential. Upon applying cathodic electrode potentials, stronger ionic liquid near surface structure is detected: both the number of near surface layers and the force required to rupture these layers increases. The electrochemical impedance spectroscopy results reveal that three distinct processes take place at the interface. The fastest process is capacitive in its low-frequency limit and is identified with electrochemical double layer formation. The differential electrochemical double layer capacitance exhibits a local maximum at -0.2 V versus Pt quasi-reference, which is most likely caused by changes in the orientation of cations in the innermost layer. In the potential range between -0.84 V and -1.04 V, a second capacitive process is observed which is slower than electrochemical double layer formation. This process seems to be related to the herringbone reconstruction. In the frequency range below 1 Hz, the onset of an ultraslow faradaic process is found. This process becomes faster when the electrode potential is shifted to more negative potentials.  相似文献   

12.
Self‐assembled monolayers (SAMs) of 4‐aminothiophenol (4‐ATP) has been successfully deposited onto nanometer‐sized gold (Au) electrodes. The cyclic voltammograms obtained on a 4‐ATP SAMs modified electrode show peaks and the peak height is proportional to the scan rate, which is similar to that on an electroactive SAMs modified macro electrode. The electrochemical behavior and mechanism of outer‐sphere electron transfer reaction on the 4‐ATP SAMs modified nanometer‐sized electrode has also been studied. The 4‐ATP SAMs modified electrode is further modified with platinum (Pt) nanoparticles. Electrochemical behaviors show that there is electrical communication between Pt nanoparticles and Au metal on the Pt nanoparticles/4‐ATP SAMs/Au electrode. However, scanning electron microscopic image shows that the Pt nanoparticles are not evenly covered the electrode.  相似文献   

13.
Mahshid S  Li C  Mahshid SS  Askari M  Dolati A  Yang L  Luo S  Cai Q 《The Analyst》2011,136(11):2322-2329
A simple modified TiO(2) nanotubes electrode was fabricated by electrodeposition of Pd, Pt and Au nanoparticles. The TiO(2) nanotubes electrode was prepared using the anodizing method, followed by modifying Pd nanoparticles onto the tubes surface, offering a uniform conductive surface for electrodeposition of Pt and Au. The performance of the modified electrode was characterized by cyclic voltammetry and differential pulse voltammetry methods. The Au/Pt/Pd/TiO(2) NTs modified electrode represented a high sensitivity towards individual detection of dopamine as well as simultaneous detection of dopamine and uric acid using 0.1 M phosphate buffer solution (pH 7.00) as the base solution. In both case, electro-oxidation peak currents of dopamine were linearly related to accumulated concentration over a wide concentration range of 5.0 × 10(-8) to 3.0 × 10(-5) M. However in the same range of dopamine concentration, the sensitivity had a significant loss at Pt/Pd/TiO(2) NTs electrode, suggesting the necessity for Au nanoparticles in modified electrode. The limit of the detection was determined as 3 × 10(-8) M for dopamine at signal-to-noise ratio equal to 3. Furthermore, the Au/Pt/Pd/TiO(2) NTs modified electrode was able to distinguish the oxidation response of dopamine, uric acid and ascorbic acid in mixture solution of different acidity. It was shown that the modified electrode possessed a very good reproducibility and long-term stability. The method was also successfully applied for determination of DA in human urine samples with satisfactory results.  相似文献   

14.
An aluminum electrode modified with gold atoms was introduced as a novel electrode. Gold atoms were deposited both chemically and electrochemically onto the aluminum electrode to make an aluminum/gold (Al/Au) modified electrode (ME). The experimental results showed that the Al/Au modified electrode prepared by chemical deposition, exhibits much more current than the electrochemical deposition method. The electrochemical behavior of the Al/Au modified electrode was studied by cyclic voltammometry. This modified electrode showed two pairs of peaks, a1c1 and a2c2, with surface‐confined characteristics in a 0.5 M phosphate buffer. The dependence of Epa of the second peak (a2c2) on pH shows a Nernestian behavior with a slope of 55 mV per unit pH. The effect of different supporting electrolytes, solution's pH and different scan rates on electrochemical behavior of Al/Au modified electrode was studied. Au deposited electrochemically on a Pt electrode (Pt/Au) was also used as another modified electrode. A comparative study of electrochemical behavior of bare Al, Pt/Au and Al/Au modified electrodes showed that both Pt/Au and Al/Au electrodes have the ability of electrocatalytic oxidation of S2O32?, but the electrocatalytic oxidation on the latter was better than the former. The kinetics of the catalytic reaction was investigated by using cyclic voltammetry and chronoamperometry techniques. The average value of the rate constant for the catalytic reaction and the diffusion coefficient were evaluated by means of chronoamperometry technique.  相似文献   

15.
For a series of graphite electrodes, modified with microquantities of Pd+Pt mixture in varied proportions, surface morphology of the catalytically active phase was studied with scanning electron microscopy (SEM), while the catalytic activity was examined at electrochemical reduction of hydrogen peroxide by means of steady-state polarization curves and constant potential amperometry. It was proven that the graphite, exhibiting the highest electrocatalytic activity (modified with Pd+Pt mixed in the ratio 70%:30% at t(deposit)=10 s) is distinguished with the smallest average size of the microformations. The operational characteristics of the same electrode and graphite modified with microquantities of Pd+Au mixed in the same ratio (70%:30%; t(deposit)=10 s) were compared. The application of these electrodes as basic transducers in highly selective biosensors for glucose and xanthine was demonstrated.  相似文献   

16.
《Electroanalysis》2006,18(23):2314-2323
Some dithiophosphonate derivatives were synthesized and the electrochemical reduction mechanism was investigated by cyclic voltammetry (CV), square wave voltammetry (SWV) and chronoamperometry (CA) in 0.1 M tetrabutylammoniumtetrafluoroborate (TBATFB) in acetonitrile at platinum (Pt) and gold (Au) electrodes. Dithiophosphonates showed a cyclic voltammetric reduction peak at about ?1.1 V at Pt and ?1.3 V at Au electrode (vs. Ag/Ag+) in this media. It was also shown that dithiophosphonates can be determined quantitatively in acetonitrile using a calibration graph. The number of electrons transferred were calculated as 2 using ferrocene as a reference compound at the UME electrode. Mechanism of dithiophosphonates was also examined on Pt and Au electrodes and electrochemical reduction of dithiophosphonates seems to follow an EC mechanism with an irreversible electron transfer step. The reaction product in the bulk electrolysis experiment was isolated and identified using proton‐coupled P‐31 NMR, 13C‐NMR and IR spectroscopy. The adsorption tests for dithiophosphonates were revealed that no strong or weak adsorption phenomena exist on both Pt and Au electrodes. Simulation curves were acquired by DigiSim 3.03 version to investigate the reduction mechanism and to estimate the kinetic parameters for electrochemical and chemical steps.  相似文献   

17.
本文提出一种新的电化学界面电位传感器构建方法.  相似文献   

18.
王伟  李娟  白茹  韩珍  冯雪薇  孙越 《应用化学》2020,37(5):595-603
在金电极表面,用无金属可见光诱导原子转移自由基聚合(MVL ATRP)的方法制备聚丙烯酰胺@氧化石墨烯/纳米钯复合物修饰电极(Au/PAM@GO/Pd)。采用电化学循环伏安法(CV)、交流阻抗法(EIS)、扫描电子显微镜(SEM)、能量色散X射线光谱法(EDS)对Au/PAM@GO/Pd电极进行表征,结果表明在金电极表面成功制备了复合物。利用Au/PAM@GO/Pd电极作为电化学传感器,该传感器能成功地检测溶液中的乙醇。在最佳条件下,利用差分脉冲伏安法(DPV)该传感器检测乙醇的线性范围为1.0×10-8~1.0 mol/L,检出限(S/N=3)为1.3×10-9 mol/L,线性相关系数为0.996。  相似文献   

19.
Microwire electrodes are presented as an alternative to screen-printed electrodes for detection in electrochemical paper-based analytical devices (ePADs). Compared to carbon ink electrodes, microwire electrodes offer lower resistance and a significant increase in current density relative to carbon ink electrodes. Various microwire compositions and diameters, including 30 μm Pt, 25 μm Au, 18 μm Pt with 8% W, and 15 μm Pt with 20% Ir, were tested and compared to theoretically predicted behavior. The measured current in static solution was below predicted levels for cylindrical microelectrodes but greater than levels predicted for hemi-cylindrical electrodes most likely as a result of the proximity of the electrode to the paper surface. Furthermore, the current response was indicative of semi-thin layer behavior, likely due to the confined solution volume in the paper. After electrode characterization, a device was developed for the non-enzymatic detection of glucose, fructose, and sucrose using a Cu electrode in alkaline solution. The limits of detection for glucose, fructose, and sucrose were 270 nM, 340 nM, and 430 nM, respectively, which are significantly below sugar concentrations found in sweetened beverages or glucose levels in serum.  相似文献   

20.
通过在不锈钢针灸针(AN)表面依次电沉积金(Au)纳米颗粒和铂(Pt)纳米颗粒,基于它们在AN表面的协同作用,实现了一种用于非酶葡萄糖检测的电化学生物传感器。首先,通过扫描电子显微镜对其功能界面(Pt/Au/AN)进行表征,结果显示类似卷心菜的纳米材料均匀致密地分布在AN表面。然后,通过循环伏安法和电化学阻抗法对Pt/Au/AN电极的电化学特性进行了研究。结果表明,与Au/AN或Pt/AN电极相比,Pt/Au/AN电极对葡萄糖氧化表现出优越的电催化活性。这表明双金属Pt/Au的接触界面是葡萄糖氧化的重要电催化位点。在pH7.4的模拟生理介质中,制得传感器的线性范围为0.1~35 mmol·L-1,检测限为0.0763 mmol·L-1,对葡萄糖的检测表现出较高的灵敏度和良好的抗干扰性能、稳定性。此外,该传感器已成功用于人体血清葡萄糖的检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号