首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A novel fluorescent chemosensor with two 5-nitro-salicylaldehyde groups at the upper rim of calix[4]arene has been synthesized. The chemosensor can effectively recognize copper(II) ion. This system could be considered as a molecular switch. By alternating the light irradiation of mixed solution formed by the host and Cu2+, off-on-off fluorescent switching is carried out.  相似文献   

2.
A rigid conjugated pyridinylthiazole derivative (1) and two bithiazole derivatives with similar structures (2, 3) were synthesized and characterized. Their optical properties were investigated through spectral analysis. By applying the three compounds to Cu2+ ions detection, it was shown that compound 1 could be employed as a selective and sensitive Cu2+ ions fluorescent chemosensor. For aqueous assay, the nanoparticles of compound 1 were prepared in aqueous media. Compared to the monomer, 1 nanoparticles were more fluorescence sensitive to Cu2+ ions. Its binding mode with Cu2+ ions was correlated well with Langmuir equation. Compound 1 nanoparticles exhibit a dynamic working range for Cu2+ ions from 0.02 to 0.50 μM with a detection limit of 10 nM. The proposed chemosensor has been used for the direct measurement of Cu2+ content in drinking water samples with satisfying results.  相似文献   

3.
A new pyrene derivative (1) containing a diaminomaleonitrile moiety exhibits high selectivity for Cu2+ detection. Significant fluorescence enhancement was observed with chemosensor 1 in the presence of Cu2+. However, the metal ions Ag+, Ca2+, Cd2+, Co2+, Fe2+, Fe3+, Hg2+, Mg2+, Mn2+, Ni2+, Pb2+, and Zn2+ produced only minor changes in fluorescence values for the system. The apparent association constant (Ka) of Cu2+ binding in chemosensor 1 was found to be 5.55×103 M−1. The maximum fluorescence enhancement caused by Cu2+ binding in chemosensor 1 was observed over the pH range 5-7.5.  相似文献   

4.
As a novel macrocyclic host, pillar[5]arene can selectively recognise guest molecules in organic solvents. In this study, a fluorescent chemosensor composed of a functionalised-pillar[5]arene and Cu2+ metal complex (PN–Cu), which shows good selectivity for CN? anions, has been designed and synthesised. Complexation between PN–Cu and anions has been probed by means of various fluorescence-based methods. PN–Cu, as a turn-on fluorescence chemosensor showed high selectivity towards CN? ions in comparison to other anions, and its detection limit for CN? was calculated as 9.03 × 10?7 M. The PN–Cu sensor can serve as a recyclable component in sensing materials. Moreover, the interaction between the singly functionalised pillar[5]arene and Cu2+ has been probed through various tests. Based on the remarkable selectivity of the chemosensor PN–Cu, we propose that it might be used as a potential material for CN? recognition.  相似文献   

5.
A new fluorescent chemosensor with imidazole as ionophore was synthesized by the selective derivation of calixarene, which can effectively recognize Cu2+ and Zn2+ leading to different fluoroscopic behaviors in CH3OH-H2O. This system could be considered as a molecular switch. By modulating the pH of the solution, on-off-on fluorescent switching is carried out upon combinatory addition of acid, base and Cu2+.  相似文献   

6.
A new terphenyl based bifunctional fluorescent chemosensor 3a has been synthesized, which demonstrates selective optical recognition of Cu2+ and F ions in two contrasting modes. The compound shows highly selective ‘On-Off’ switchable behavior toward Cu2+ ions and ‘On-Off-On’ behavior toward F ions among various cations and anions tested. The detection limits of chemosensor for Cu2+ and F ions are found to be 100 nM and 10 nM, respectively.  相似文献   

7.
A novel fluorescent chemosensor, (E)-7-(diethylamino)-3-((2-phenylimidazo[1,2-a]pyridin-3-ylimino)methyl)-2H-chromen-2-one 1a, has been synthesised and characterised. This chemosensor displayed an extreme selective fluorescence emission only with Cu2+ ion over all other metal ions examined. The Job’s plot experiment analysis suggested the binding ratio of the chemosensor 1a with Cu2+ was 1:1 metal-to-ligand ratio. The association constant for Cu2+ towards receptor 1a obtained from Benesi–Hildebrand plot was found to be 4.859 × 103 M?1 with a detection limit 4.6 × 10?8 M. Fluorescence enhancement caused by Cu2+ binding with chemosensor 1a attributed to combinational effect of intramolecular charge transfer and chelation-enhanced fluorescence occurred at pH 8.0.  相似文献   

8.
Yu C  Chen L  Zhang J  Li J  Liu P  Wang W  Yan B 《Talanta》2011,85(3):1627-1633
A novel Cu2+-specific “off-on” fluorescent chemosensor of naphthalimide modified rhodamine B (naphthalimide modified rhodamine B chemosensor, NRC) was designed and synthesized, based on the equilibrium between the spirolactam (non-fluorescence) and the ring-opened amide (fluorescence). The chemosensor NRC showed high Cu2+-selective fluorescence enhancement over commonly coexistent metal ions or anions in neutral aqueous media. The limit of detection (LOD) based on 3 × δblank/k was obtained as low as 0.18 μM of Cu2+, as well as an excellent linearity of 0.05-4.5 μM (R = 0.999), indicating the chemosensor of high sensitivity and wide quantitation range. And also the coordination mode with 1:1 stoichiometry was proposed between NRC and Cu2+. In addition, the effects of pH, co-existing metal ions and anions, and the reversibility were investigated in detail. It was also demonstrated that the NRC could be used as an excellent “off-on” fluorescent chemosensor for the measurement of Cu2+ in living cells with satisfying results, which further displayed its valuable applications in biological systems.  相似文献   

9.
A selective and sensitive intramolecular charge transfer (ICT) fluorescent chemosensor was designed for Cu2+ in neutral aqueous solutions of pH 7.0. The design of this totally water-soluble fluorescent chemosensor was based on the binding motif of Cu2+ to aminoacid, which is coupled to an ICT fluorophore bearing a 1,3,4-thiodiazole moiety in the electron acceptor. The formation of a 1:1 complex of Cu2+ to 2 was suggested to lead to fluorescence quenching. The quenching obeyed Stern-Volmer theory in neutral aqueous solution of pH 7.0 for Cu2+ over 5.0 × 10−7 to 3.0 × 10−5 mol·L−1, with a quenching constant of 1.8 × 105 L·mol−1 and a detection limit of 2.0 × 10−7 mol·L−1. The binding of Cu2+ to 2 can be fully reversed by addition of chelator EDTA, affording a reversible sensing performance.  相似文献   

10.
The fluorescent chemosensor of the type Ant-NH-O-O-NH-Ant for Cu2+ ions has been designed by means of a supramolecular approach, as follows: two anthracene (Ant) fragments as fluorophore subunits have been linked by a noncyclic NH-O-O-NH quadridentate ligand as a receptor. The interaction of Cu2+ - receptor is signalled through the enhancement of the anthracene fluorescence when the receptor, i.e., the dioxodiamine chain subunit of the sensor is able to stop a photoinduced electron-transfer mechanism. The experiments with the chemosensor encapsulated in silica xerogel by the sol-gel processing are described.  相似文献   

11.
A new chemosensor for Cu2+ was synthesized based on 1,2,3,4,5,6,7,8,9,10‐decahydroacridine‐1,8‐dione dyes, which exhibited an obvious fluorescent selectivity to the sensing of Cu2+ ions over other cations, such as Na+, K+, Ca2+, Cd2+, Co2+, Hg2+, Mg2+, Mn2+, Ni2+, Zn2+, Ag+ and Pb2+. Moreover, it presented a fluorescent switch function when EDTA was added to the compound‐Cu2+ complex in examined systems.  相似文献   

12.
Hui Xu  Xiwen Zeng  Huiling Dai 《中国化学》2011,29(10):2165-2168
A new fluorescent chemosensor based upon 1,8‐naphthalimide and 8‐hydroxyquinoline was synthesized, and its fluorescent properties in the presence of different metal cations (Hg2+, Ag+, Zn2+, Fe2+, Cd2+, Pb2+, Ca2+, Cu2+, Mg2+, and Ba2+) were investigated. It displayed fluorescence quenching with some heavy and transition metal (HTM) ions, and the quenching strongly depended on the nature of HTM ions.  相似文献   

13.
Since the copper ions (Cu2+) play a fatal role in many foundational physiological processes, it is important to develop a simple, highly sensitive and selective sensor for Cu2+ detection in living systems. Herein, an intramolecular charge transfer (ICT) and dansyl-based fluorescent chemosensor 1 was designed, synthesized and characterized for the sensitive and selective quantification of Cu2+. It exhibited remarkable fluorescence quenching upon addition of Cu2+ over other selected metal ions, attributed to the complex formation between 1 and Cu2+ with the association constant 6.7 × 105 M?1. The sensor 1 showed a fast and linear response towards Cu2+ in the concentration range from 0 to 12.5 × 10?6 mol L?1 with the detection limit of 2.5 × 10?7 mol L?1. This detection could be carried out in a wide pH range of 5.0–14. Furthermore, sensor 1 can be used for detecting Cu2+ in living cells.  相似文献   

14.
A novel fluorescence chemosensor 1 based on (R)‐binaphthyl‐salen can exhibit highly sensitive and selective recognition responses toward Cu2+ by "turn‐off" fluorescence quench type in THF/H2O, and Zn2+ by "turn‐on" fluorescence enhancement type in CHCl3/CH3CN, respectively, suggesting that solvents can dramatically affect the responsive properties of salen‐based chemosensor. In addition, Cu2+ can lead to the most pronounced changes of CD spectra without the influence of solvents, which indicates this kind chemosensor can also be used as a sole Cu2+ probe based on CD spectra.  相似文献   

15.
A FRET-based chemosensor L containing donor phenanthroline and acceptor fluorescein moiety was designed, synthesised and characterised for the ratiometric fluorescent detection of Cu2+ in organo-aqueous solution. Probe L showed high selectivity and excellent sensitivity towards Cu2+ ions by exhibiting both colorimetric and fluorometric changes due to opening of the spirolactum ring of fluorescein upon complexation with Cu2+. In presence of Cu2+ ions, probe L formed L-Cu2+ complex in 1:1 stoichiometric fashion which is established on the basis of Job’s plot and mass spectroscopy. We also performed DFT computational studies to know the binding nature and coordination feature of the complex. Furthermore, fluorescence imaging studies revealed that probe L was cell permeable and could be used to detect intracellular Cu2+ in living cells.  相似文献   

16.
A novel fluorescent chemosensor 1 with two anthraceneisoxazolymethyl groups at the lower rim of calix[4]arene has been synthesized, which revealed a dual emission (monomer and excimer) when excited at 375 nm. This chemosensor displayed a selective fluorescence quenching only with Cu2+ ion over all other metal ions examined. When Cu2+ ion was bound to 1, the fluorescence intensities of both monomer and excimer were quenched. Furthermore, the association constant for the 1:1 complex of 1·Cu2+ was determined to be (1.58 ± 0.03) × 104 M−1.  相似文献   

17.
设计合成基于苯并噻唑Zn2+荧光增强型探针BHP,在HEPES缓冲液中测其对Zn2+识别性能。实验结果表明,BHP对Zn2+有较高的选择性,对其他金属离子如Cd2+,Fe2+,Ni2+,Pb2+,Hg2+,Al3+,Mn2+,Ag+,Cu2+,Co2+,Na+,K+,Mg2+和Ca2+无明显荧光增强响应。BHP与Zn2+按1:1计量比配位,在生理条件下荧光强度不受pH值影响。在HeLa细胞中对Zn2+的造影表明BHP可用于生物体Zn2+检测。  相似文献   

18.
合成了以1,8-萘酰亚胺为发色团,以联吡啶为离子受体的Zn2+荧光探针,并进行了表征及离子识别性能的研究。研究表明该化合物对Zn2+具有良好的识别性能,同时相对于Ca2+, Cd2+, Co2+, Cu2+, Hg2+, Fe3+, Mn2+, Ni2+, Pb2+等金属离子具有良好的选择性。  相似文献   

19.
A structurally simple (Z)-2-(naphthalen-2-ylmethylene)-N-phenylhydrazinecarbothioamide (R1) was used as a colorimetric and fluorescent sensor for both F and Cu2+/Hg2+ ions. R1 selectively recognised F ions as indicated by colour change from colourless to green. Fluorescence spectral data reveal that R1 is an excellent fluorescence chemosensor for Cu2+ ions. Finally, R1 was successfully applied to the bioimaging of Cu2+ ions in RAW 264.7 macrophage cells.  相似文献   

20.
Schiff bases derived from 7-hydroxy-4-methyl-2-oxobenzo[h]chromene-8-carbaldehyde in solution exist as equilibrium mixtures of benzoid and quinoid tautomers. The fraction of the quinoid tautomer increases with rise in solvent polarity. The Schiff base containing a benzo-15-crown-5 fragment on the nitrogen atom was shown to be a new ambident chemosensor capable of selectively binding transition metal cations via reaction at the o-hydroxyaldehyde imine fragment and alkaline-earth metals via host-guest interaction with the crown ether moiety. This compound exhibits a pronounced sensor activity toward Mg2+ and Ba2+ ions and is a selective naked-eye fluorescent chemosensor for Cu2+ and Co2+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号