首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 449 毫秒
1.
Four new compounds [Ni2(4,4′-bpy)(3,4-bptc)(H2O)4]n (1), [Ni(4,4′-bpy)(3,4-H2bptc)(H2O)3]n (2), [Mn2(2,2′-bpy)4(3,4-H2bptc)2] (3) and {[Mn(1,10-phen)2(3,4-H2bptc)]·4H2O}n (4) (3,4-H4bptc=3,3′,4,4′-biphenyltetracarboxylic acid, 4,4′-bpy=4,4′-bipyridine, 2,2′-bpy=2,2′-bipyridine, 1, 10-phen=1, 10-phenanthroline), have been prepared and structurally characterized. In all compounds, the derivative ligands of 3,4-H4bptc (3,4-bptc4− and 3,4-H2bptc2−) exhibit different coordination modes and lead to the formation of various architectures. Compounds 1 and 2 display the three-dimensional (3D) framework: 1 shows a 3,4-connected topological network with (83)(85·10) topology symbol based on the coordination bonds while in 2, the hydrogen-bonding interactions are observed to connect the 1D linear chain generating a final 3D framework. 3 exhibits the 2D layer constructed from the hydrogen-bonding interactions between the dinuclear manganese units. Complex 4 shows the double layers motif through connecting the 1D zigzag chains with hydrogen-bonded rings. The thermal stability of 1-4 and magnetic property of 1 were also reported.  相似文献   

2.
Shin-ichi Naya 《Tetrahedron》2008,64(14):3225-3231
As novel methodology for synthesizing the furan ring, a photoinduced oxidative cyclization of 5-(4′,9′-methanocycloundeca-2′,4′,6′,8′,10′-pentaenylidene)pyrimidine-2,4,6(1,3,5H)-triones (7a-c) and related compounds 9a-c was accomplished to give 5,10-methanocycloundeca[4,5]furo[2,3-d]pyrimidine-2,4(1,3H)-dionylium tetrafluoroborates (8a-c+·BF4) and related compounds 2a-c+·BF4, respectively. In the photoinduced oxidative cyclization, the molecular oxygen in air is used as oxidant and the reaction proceeds under mild conditions to give desired products without byproducts, and thus, it is interesting from the viewpoint of the green chemistry. On the reactions of the mono-substituted derivatives 7d,e and 9e,f, the selectivity of the photoinduced cyclizations were reversed as compared with those of the DDQ-promoted oxidative cyclizations. By the NMR monitoring of the reactions of 7a and deuterated compound 7a-D2 under degassed conditions, the details of the reaction pathway were clarified and rationalized on the basis of the MO calculation by the 6-31G basis set of the MP2 levels as well.  相似文献   

3.
To discover novel nucleosides as potential antiviral agents, 1′,2′-cyclopentyl nucleosides were designed as hybrids of sofosbuvir and GS-6620. An asymmetric aldol condensation reaction was used as the key transformation to prepare the versatile 1′,2′-cyclopentyl ribose 6, which is useful to explore diverse bases at 1′ and its utility was demonstrated via the syntheses of nucleosides 9 and 11. The 2′-β-methyl-1′,2′-cyclopentyl ribonucleoside scaffold was exemplified via a C-nucleoside which was prepared using a RCM reaction as the key step leading to novel nucleoside 35.  相似文献   

4.
Hisashi Shimada 《Tetrahedron》2009,65(31):6008-2622
Synthesis of 4′-substituted thymidines was investigated based on nucleophilic substitution using organosilicon and organoaluminum reagents. Two substrates having a benzenesulfonyl leaving group at the 4′-position were prepared for this purpose: 1-[4-benzenesulfonyl-3,5-bis-O-(tert-butyldimethylsilyl)-2-deoxy-α-l-threo-pentofuranosyl]thymine () and the 4′-(benzenesulfonyl)thymidine derivative (). The reaction of with organosilicon reagents (Me3SiCH2CHCH2 and Me3SiN3) in combination with SnCl4 gave preferentially the 4′-substituted β-d-isomer: the 4′-allyl (12β) and 4′-azido (15β) derivatives, respectively. The reaction of with AlMe3, however, gave the 4′-methyl-α-l-isomer (16α) as the major product, presumably through an ion pair mechanism. By employing the substrate in this reaction, the 4′-methylthymidine derivative (16β) was obtained exclusively in high yield. The 4′-ethyl (20β) and 4′-cyano (24β) derivatives were also synthesized by reacting with the respective organoaluminum reagent.  相似文献   

5.
A concise synthesis of the spiro[(2,2-dimethyl-[1,3]-dioxane)-5,2′-(2′,3′-dihydroindole)] nucleus from substituted benzyl chlorides and 5-(hydroxymethyl)-2,2-dimethyl-5-nitro-1,3-dioxane 5 as starting materials is reported. The nitro intermediates 6 and 7 were prepared under SRN1 reaction conditions.  相似文献   

6.
The preparation of a number of new 9-substituted octafluorofluorene derivatives, solution NMR studies, and the first examples of solid state structures of octafluorofluorenes [1,2,3,4,5,6,7,8-octafluorofluorene, C13H2F8, 1; 1,2,3,4,5,6,7,8-octafluoro-9-(pentafluoro)phenylfluorene, C19HF13, 8; 1,1′,2,2′,3,3′,4,4′,5,5′,6,6′,7,7′,8,8′-hexadecafluoro-9,9′-bifluorenyl, C26H2F16, 11] are reported. Variable temperature 19F NMR investigations have been performed on the 9-aryl substituted compounds 1,2,3,4,5,6,7,8-octafluoro-9-(pentafluoro)phenyl-9-hydroxyfluorene, C19HF13O, 4, 1,2,3,4,5,6,7,8-octafluoro-9-(nonafluoro-4′-biphenylyl)-9-hydroxyfluorene, C25HF17O, 5, and 8, and the energetic barriers to rotation of the aryl have been determined. A lower rotational barrier is observed for compound 4 with respect to compound 8, while 5 does not show fluxional behaviour below 338 K. The results of the variable temperature experiments performed on 8 have been rationalized by 2D NMR studies, and compared to the solid state data resulting from the X-ray structural analysis.  相似文献   

7.
The 2,2′:6′,2″-terpyridines 7a-c were prepared in good yield by reacting α-acetoxy-α-chloro-β-keto-esters 3a-c with bis-amidrazone 4 and 2,5-norbornadiene 6 in ethanol at reflux. Compounds 3a and 3b gave the 2,2′:6′,2″-terpyridines 9a and 9b, respectively, in moderate yield when treated with compound 4 and enamine 8.  相似文献   

8.
Five transition metal compounds containing arenesulfonates and 4,4′-bipy ligands, namely [Zn2(N,N′-4,4′-bipy)(N-4,4′-bipy)2(H2O)8](bpds)2 · 5H2O (1), [Ag2(N,N′-4,4′-bipy)2(bpds)] (2), [Cd(N,N′-4,4′-bipy)(H2O)4]2(4-abs)4 · 5H2O (3), [Cu(N,N′-4,4′-bipy) (O-bs)2(H2O)2] · 4H2O (4), and [Zn(N,N′-4,4′-bipy)2(H2O)2](4,4′-bipy)(bs)2 · 4H2O (5) (4,4′-bipy = 4,4′-bipyridine, bpds = 4,4′-biphenyldisulfonate, 4-abs = 4-aminobenzenesulfonate, bs = benzenesulfonate), have been synthesized and characterized by X-ray single crystal diffraction, elemental analyses and TG analyses, in order to investigate the coordination chemistry of arenesulfonates and 4,4-bipy, as well as to construct novel coordination frameworks via mixed-ligand strategy. Compounds 2, 4 and 5 could be obtained via hydrothermal or aqueous reactions. Compound 1 forms a binuclear octahedral metal complex. Compounds 24 form polymeric chains. Compound 5 consists of 2D square grids with one intercalated 4,4′-bipy molecule. Weak Ag–Ag interactions are observed in compound 2. These complexes show great structural varieties and there are three different coordination modes observed for both the 4,4′-bipy and the sulfonate ligands.  相似文献   

9.
Fang Fang 《Tetrahedron letters》2009,50(48):6672-1951
A new family of achiral 3,3′,5,5′-tetrasubstituted-2,2′,6,6′-tetrahydroxy biphenyl ligand 4 was developed. The axial chirality of the ligand could be induced by the chelation of 2,2′,6,6′-tetrahydroxy groups with (R)-BINOL-Ti(OiPr)2 to form an axially chiral bimetallic titanium catalyst 9. Compared with (R)-BINOL-Ti(OiPr)2 catalyst, this novel catalyst 9 exhibited excellent activity and enantioselectivity for the carbonyl-ene reaction of methylstyrene and ethyl glyoxylate. 3,3′,5,5′-Tetrasubstituted groups showed a remarkable effect on both enantioselectivity and yield. With 9d prepared from 3,3′,5,5′-tetramethyl-2,2′,6,6′-tetrahydroxy biphenyl 4d as the catalyst, the best result, up to 97.6% ee and 99% yield, was obtained. Additionally, the bimetallic catalyst 9 also showed better catalytic capability than the corresponding monometallic catalyst.  相似文献   

10.
An iterative method for the synthesis of C2-C4′ linked poly-oxazoles has been developed. This efficient two-step repetitive process includes TBS-iodine exchange reaction and Suzuki-Miyaura cross-coupling reaction with oxazolylboronate 8, which allows appending a bis-oxazole moiety per each iteration. The synthesis of bis-, tris-, tetrakis-, pentakis-, and hexakis-oxazoles (10, 14, 22, 18, and 24) was achieved starting from the common intermediate 7 in 1-5 steps.  相似文献   

11.
Reaction of 3,3′,4,4′-tetramethyl-1,1′-diphosphaferrocene (1) with [Re2(CO)8(CH3CN)2] afforded two trimetallic complexes in which the heterometallocene is ligated across the Re-Re bond. The structure of the complex having 1 bridging the Re2(CO)8 moiety through two P atoms was determined by X-ray diffraction and compared with those of analogous complexes with organic bridging bis-phosphines. The second complex obtained in this reaction presumably contains 1 acting as a (P,Fe) bridging ligand.  相似文献   

12.
Novel dipyrido[1,2-a;3′,4′-d]imidazoles 7a-d, dipyrido[1,2-a;4′,3′-d]imidazoles 8a,c and pyrido[1′,2′;1,2]imidazo[4,5-d]pyridazine derivatives 9a-d were synthesized by two pathways: thermal electrocyclic reaction of 3-alkenylimidazopyridine-2-oximes 10 and direct condensation of ethyl glycinate (or hydrazine) with 2,3-dicarbonylimidazo[1,2-a]pyridines 11.  相似文献   

13.
The synthesis, characterization and catalytic activity of a series of tetra-halo-dimethyl salen and di-halo-tetramethyl-salen ligands are reported in this paper: α,α′-dimethyl-Salen (dMeSalen) (L1); 3,3′,5,5′-tetrachloro-α,α′-dimethyl-Salen, (tCldMeSalen) (L2); 3,3′-dibromo-5,5′-dichloro-α,α′-dimethyl-Salen, (dCldBrdMeSalen) (L3); 3,3′,5,5′-tetrabromo-α,α′-dimethyl-Salen, (tBrdMeSalen) (L4); 3,3′,5,5′-tetraiodo-α,α′-dimethyl-salen, (tIdMeSalen) (L5); 3,3′-dichloro-5,5′,α,α′-tetramethyl-Salen (dCltMeSalen) (L6); 3,3′-dibromo-5,5′,α,α′-tetramethyl-Salen (dBrtMeSalen) (L7); and 3,3′-diiodo-5,5′,α,α′-tetramethyl-Salen (dItMeSalen) (L8) (Salen = bis(salicylaldehyde)ethylenediamine). Upon reaction with Co(II) ions, these ligands form complexes with square planar geometry that have been characterized by elemental analysis, cyclic voltammetry, UV–Vis, IR and EPR spectroscopies. In the presence of pyridine the obtained Co(II) complexes were found able to bind reversibly O2, which was shown by EPR spectroscopy and cyclic voltammetry. They were also found able to catalyze the oxidation of 2,6-di-tert-butylphenol (DtBuP) (9) with formation of 2,6-di-tert-butyl-1,4-benzoquinone (DtBuQ) (10) and 2,6,2′,6′-tetra-tert-butyl-1,1′-diphenobenzoquinone (TtBuDQ) (11). These properties are first influenced by the coordination of pyridine in axial position of the Co(II) ion that causes an increase of the electronic density on the cobalt ion and as a consequence a decrease in the E1/2 value and an increase of the reducing power of the Co(II) complex. It is noteworthy that, under those conditions the complexes also show a remarkable quasi-reversible behaviour. Second, complex properties are also influenced by the substituents (methyl and halogen) grafted on the aromatic ring and on the azomethynic groups. The donating methyl substituent on the azomethynic groups causes a decrease in the E1/2 value, whereas the halogen substituents on the aromatic rings have two effects: a mesomeric donating effect that tends to lower the redox potential of the complex, and a steric effect that tends to decrease the conjugation of the ligand and then to increase the redox potential of the Co(II) complex. In pyridine, the steric effect predominates, which causes both an increase of the redox potential and a decrease of the selectivity of the oxidation of phenol 9. As a result of all these effects, it then appears that the best catalysts to realize the selective oxidation of 2,6-di-tert-butyl-phenol (9) by O2 are the Co complexes of ligands bearing CH3 donating substituents, Co(dMeSalen) 1 (2CH3 substituents), and Co-di-halo-tetra-methyl-salen complexes 6, 7 and 8 (4CH3 substituents), in the presence of pyridine.  相似文献   

14.
4,5-Dichloro-1,2,3-dithiazolium chloride 1 (Appel salt) reacts in wet DCM, THF or MeCN to give elemental sulfur, dithiazole-5-thione 4, dithiazol-5-one 5 and thiazol-5-one 6. Furthermore the reaction of 2-phenylthiazol-5(4H)-one 12 with Appel salt 1 at ca. 20 °C gives 4-(4-chloro-5H-1,2,3-dithiazol-5-ylidene)-2-phenylthiazol-5(4H)-one 13 (26%) while at ca. 82 °C a new product 2,2′-diphenyl-4,4′-bithiazol-ylidene-5,5′-dione 14 (36%) is additionally isolated. Finally, 4,4′-bithiazolylidene-5,5′-dione 14 is prepared directly by treating 2-phenylthiazol-5(4H)-one 12 with N-chlorosuccinimide. All new compounds are fully characterised and rational mechanisms are proposed for the formation of all key compounds.  相似文献   

15.
We report herein a synthesis of 4′-selenouridine 12 and 4′-selenocytidine 14, substrates for the synthesis of 4′-selenoRNA. The Pummerer-like reaction between the selenoxide 9 and a silylated uracil afforded the desired 4′-selenouridine derivative 10; however, the chemical yield of 10 was rather low. In addition, the reproducibility of this reaction was poor because of the instability of the selenoxide 9. Improvement of this Pummerer-like reaction to give 10 was achieved when the 4-selenosugar 8 was treated with TMSOTf, 2,6-lutidine and the silylated uracil in the presence of iodosylbenzene.  相似文献   

16.
D Branowska 《Tetrahedron》2004,60(28):6021-6027
1,2,4-Triazines bearing cycloalkeno[c]pyridine substituents at the 5-position, 2a-d, prepared by an intermolecular Diels-Alder reaction of bi-5,5-triazines with cyclic enamines, were provided with an alkynyloxy or a 2-cyanophenoxy group at the 3-position of the triazinyl unit. A subsequent intramolecular Diels-Alder reaction of the former, followed by loss of N2 leads to two new classes of 2,2′-bipyridine analogues containing different heterocyclic units, namely cycloalkeno[c]pyridine and 2,3-dihydrofuro- or 2,3-dihydropyrano[2,3-b]pyridine 8a-h; the intramolecular reaction of the 2-cyanophenoxy compound gives benzo[4,5]furo[2,3-b]pyrazine 10a-c.  相似文献   

17.
Yutaka Kubota 《Tetrahedron》2008,64(10):2391-2396
With an aim to synthesize 4′-substituted cordycepins, the 4′-benzoyloxy precursor (9) was prepared from adenosine through an electrophilic addition (iodo-benzoyloxylation) to the 4′,5′-unsaturated derivative (5) and subsequent radical-mediated removal of the 3′-iodine atom of the resulting adducts (6). Usefulness of 9 was briefly verified by synthesizing the 4′-allyl (12) and 4′-cyano (13) analogues of cordycepin.  相似文献   

18.
Reactions between the C,C′-dicopper(I) derivative of ortho-carborane and ortho-, meta- and para-diiodobenzene are reported. The reaction with 1,2-C6H4I2 unexpectedly afforded 2,2′-bis(1′-ortho-carboranyl)biphenyl, [HCB10H10CC6H4]22, whereas reactions with 1,3- or 1,4-C6H4I2 provided alternative routes to 1,3-bis(1′-ortho-carboranyl)benzene 3 and 1,4-bis(1′-ortho-carboranyl)benzene 4, respectively. The crystal structure of the biphenyl derivative 2 revealed significant distortions in the biphenylene framework attributable to the proximity of the two bulky carborane cages. UV absorption spectra and electrochemical data on 2 and 3 showed little electronic communication between the two carborane cages in either, and negligible π-conjugation between the two ortho-phenylene rings in 2. However, substantial evidence was found of electronic communication between the carborane cages via the para-phenylene bridge in 4. B3LYP/6-31G computations have been carried out on compounds 2 and 4, on 4,4′-bis(ortho-carboranyl)biphenyl 6 and on 1,2-bis(1′-ortho-carboranyl)benzene 7. Those on 2, 4 and 6 show the computed geometries to be in very good agreement with the experimental geometries: those on 7 allowed the reported molecular geometry of this compound to be revised and revealed a long cage C–C bond of 1.725(3) Å.  相似文献   

19.
Barbier type additions of allylic bromide 4, derived from (Z)-but-2-en-1,4-diol 2 to (R)-2,3-cyclohexylideneglyceraldehyde 1 were performed through mediation with Zn employing Luche’s procedure and also with low valent Cu, Co, and Fe which were produced via bimetal redox strategy in THF to afford 5c,d as the major products. From these, 5a,b were prepared following an oxidation-reduction protocol. Compound 5c was exploited as a representative starting material to develop a simple and inexpensive strategy toward the synthesis of 3′-C-branched 2′,3′-dideoxynucleosides having stereodiversity at 3′- and 4′-positions.  相似文献   

20.
Oxygenation of 2,5,9,12-tetra(tert-butyl)diacenaphtho[1,2-b:1′,2′-d]-thiophene (1, C40H44S) by peracids gave the cyclic sulfonic ester 4 (2,7,10,13-tetra(tert-butyl)diacenaphtho[1,2-c:1′,2′-e]oxathiin 5,5-dioxide, C40H44O3S) which, when heated in nitrobenzene, is converted into a complex, macrocyclic anhydride 3 (C80H88O3), which is derived from two molecules of 4. Further investigation found a likely intermediate in this reaction, 4,4′,7,7′-tetra(tert-butyl)-1,1′-biacenaphthylenylidene-2,2′-dione (5, C40H44O2), apparently formed from 4 by additional oxidation. Anhydride 3 plausibly arises by Diels-Alder reaction of 4 and 5 followed by several ring fragmentations. The structures of 3, 4, and 5 were unambiguously established by X-ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号