首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The synthesis of atropisomeric 2-substituted benzamides 2a-e, 3a-e, and 4a-e, and characterization by X-ray structure analysis of 2d, 2e, 3c, 3e, 4c, and 4e are reported. Dynamic 1H NMR spectroscopic studies of benzamides 2b-d, 3b-d, and 4b-d indicate that only two of the four possible rotamers are present in solution, with population ratios ranging between 1.5:1 and 4.1:1. The measured free energy of activation to interconversion of the rotamers ranged from 12.4 to 18.9 kcal mol−1. Benzamides ArCON[(S)-phenethyl]2 (2e, 3e, and 4e), exhibited atropisomer ratios between 1.7:1 and 1:1, and free energies of interconversion of the rotamers ranged from 11.5 to 17.6 kcal mol−1. The highest rotation barriers were observed for the ortho-nitro derivatives 2a-e. Molecular calculations at the semiempirical level (PM3MM) gave free energies of activation for benzamides 2e and 3e of 23.6 and 12.4 kcal mol−1, respectively, which are comparable to the experimental values.  相似文献   

2.
The energies and structures of possible intermediates in the dinitrogen extrusion from diazidophenylborane 4a to give phenylborylene 11a were determined using density functional (B3LYP), multiconfigurational (CASSCF and MRMP2), and coupled cluster (CCSD(T)) computations in conjunction with basis sets of up to cc-pVTZ quality. Formation of 11a and nitrogen from 4a is an exothermic process (−21 kcal mol−1). The triplet electronic ground state of azidophenylborylnitrene 5a (PhBN4) is only 26 kcal mol−1 higher in energy than 4a and the phenyl shift in 5a to yield N-azidophenyliminoborane 7a is highly exothermic.  相似文献   

3.
When a benzene ring bears two 2-methyl-1-naphthyl moieties in the para, meta or ortho positions as in 1,4-bis(2-methyl-1-naphthyl)benzene, 1, 1,3-bis(2-methyl-1-naphthyl)benzene, 2 and 1,2-bis(2-methyl-1-naphthyl)benzene 3, two rotational isomers (atropisomers) are generated, with the two naphthyl substituents in a syn or anti relationship. In the case of the para and meta derivatives (1 and 2, respectively) these atropisomers could not be separated but were detected by NMR spectroscopy, that also allowed the determination of their syn-anti interconversion barriers in solution (19.5 and 20.4 kcal mol−1, respectively) and, in the case of 2, also in the solid state (26.7 kcal mol−1). In the more hindered ortho derivative 3, the syn (meso) and anti (racemic) atropisomers interconvert in solution with a barrier (31.2 kcal mol−1) sufficiently high to allow their physical separation. The racemic form could also be separated (by enantioselective HPLC) into the PP and MM enantiomers. Analysis of the corresponding CD spectra allowed the assignment of the absolute configuration. When three such naphthyl substituents are bonded to the phenyl in a meta relationship, two atropisomers in statistical proportions were observed: the anti (Cs symmetry) and the syn (C3v symmetry) display a 3:1 ratio at the equilibrium in solution. This ratio is different in the solid state, as is the interconversion barrier (22.1 and 32.1 kcal mol−1 in solution and in the solid, respectively).  相似文献   

4.
An experimental and theoretical DFT study was carried out on the solution behavior in [D7]DMF for bis-chelate complex [Pd(L)2](BF4)2·2CH3CN (L = 4-phenyl-1-(2-picolyl)-1,2,3-triazole). In structure of [Pd(L)2]2+, the central square-planar palladium(II) cation is trans-chelated by two L substrates, each through the pyridine and the triazole N2 nitrogen atoms, forming two six-membered metallacycles. These can adopt boat-like conformations anti-trans-[Pd(L)2]2+ and syn-trans-[Pd(L)2]2+ in which the picolyl methylene carbons are anti or syn, respectively, relative to the palladium coordination plane. In solution, the boat-to-boat inversion at both metallacycles takes place. The conformers are in a dynamic equilibrium, which was monitored by variable-temperature (VT) 1H NMR spectroscopy in the temperature range of 223-353 K. The equilibrium lies on the side of the anti-trans-[Pd(L)2]2+ conformer and the corresponding reaction enthalpy and entropy is estimated to be 0.6 ± 0.5 kcal mol−1 and 0.8 ± 1 cal mol−1 K−1, respectively. From the full-line-shape analysis of resonances in the VT 1H NMR spectra, the activation enthalpy and activation entropy was determined to be 13.0 ± 0.4 kcal mol−1 and 2.7 ± 1.6 cal mol−1 K−1, respectively. The activation entropy close to zero suggests a nondissociative mechanism for the isomerisation. DFT investigation revealed that the isomerisation proceeds through a one step mechanism with a barrier of 11.40 kcal mol−1. The structures of the syn and anti conformers as well as that of the transition state were characterized. Energy decomposition analysis was carried out in order to explore the origins of the stability difference between the syn and anti isomers.  相似文献   

5.
Four iron(II) and cobalt(II) complexes ligated by 2,6-bis(4-nitro-2,6-R2-phenylimino)pyridines, LMCl2 (1: R = Me, M = Fe; 2: R = iPr, M = Fe; 3: R = Me, M = Co; 4: R = iPr, M = Co) have been synthesized and fully characterized, and their catalytic ethylene polymerization properties have been investigated. Among these complexes, the iron(II) pre-catalyst bearing the ortho-isopropyl groups (complex 2) exhibited higher activities and produced higher molecular weight polymers than the other complexes in the presence of methylaluminoxane (MAO). A comparison of 2 with the reference non-nitro-substituted catalyst (2,6-bis(2,6-diisopropylphenylimino)pyridyl)FeCl2 (FeCat 5) revealed a modest increase of the catalytic activity and longer lifetime upon substitution of the para-positions with nitro groups (activity up to 6.0 × 103 kg mol−1 h−1 bar−1 for 2 and 4.8 × 103 kg mol−1 h−1 bar−1 for 5), converting ethylene to highly linear polyethylenes with a unimodal molecular weight distribution around 456.4 kg mol−1. However, the iron(II) pre-catalyst 1 on changing from ortho-isopropyl to methyl groups displayed much lower activities (over an order of magnitude) than 2 under mild conditions. As expected, the cobalt analogues showed relatively low polymerization activities.  相似文献   

6.
Jian-Wei Xu  Wei-Ling Wang 《Tetrahedron》2005,61(39):9248-9256
Crown-tetrathia[3.3.3.3]metacyclophanes 3a-c were synthesized via intermolcular coupling reaction in 22-30% yields. X-ray crystal analysis of 3b revealed that it adopted a perpendicular conformation (3b-B or 3b-C) in which two aromatic rings were inclined to be perpendicular to the opposite aromatic rings, driving two internal methyl groups into the π-cloud of the corresponding benzene rings. Furthermore, this perpendicular structural feature led to benzylic protons of thia-bridges being in close proximity to the adjacent aromatic rings. As a result, the induced upfield shifts for the two internal methyl protons and four benzylic protons were clearly observed in dynamic 1H NMR spectra at low temperature, indicating that the intramolecular C-H?π interaction became increasingly important at low temperature. The energy barrier for inter-conversion between 3b-B and 3b-C was estimated to be 12.1 kcal mol−1 by using a coalescence method. The total stabilization enthalpy of the C-H?π interactions was quantitatively calculated to be 7.9±0.8 kcal mol−1 by the dynamic NMR spectroscopy. In contrast, 3a showed two non-interconvertible conformers at room temperature, which tended to interconvert at elevated temperature, however, many conformers co-existed at low temperature.  相似文献   

7.
The effect of β-cyclodextrin (CD) and hydroxypropyl-β-cyclodextrin (HPCD) in water solutions on the UV-Vis and fluorescence spectra of carbaryl (1-naphthyl-N-methylcarbamate, CY) and carbofuran (2,2-dimethyl,2-3-dihydro-7-benzofuranyl-N-methylcarbamate, CF) was investigated. Host-guest interactions were observed by UV-Vis and spectrofluorimetry and the association constants for the 1:1 complexes (KA, mol−1 dm3) with CD and HPCD were determined. The values obtained were 190±10 and 123±7 mol−1 dm3 for CF and 350±50 and 644±53 mol−1 dm3 for CY, respectively. The values of the fluorescence quantum yield ratios (φcomplexed/φfree) were 1.24±0.01 with CD and 1.310±0.007 with HPCD for CY, but much higher for CF being 7.0±0.1 with CD and 9.3±0.4 with HPCD. The limits of detection (LOD) for the fluorimetric determination under the better conditions were 14.5 ng cm−3 for the complex CF:CD and 1.94 ng cm−3 for the complex CY:CD in water, with notable improvement specially in the case of CF. We observed higher analytical sensitivity with the cyclodextrins (CDs) in presence of alcohols but not better LOD. The method is rapid, simple, direct and sensitive and the recovery of CY and CF was found to be between 100 and 112% in fruits and 97 and 109% in tap water. The allowed level of carbamates in banana can be detected by the proposed method.  相似文献   

8.
Exchange of PMe2Ph for PPh3 in (η5-pentadienyl)ruthenium{bis(triphenylphosphine)}chloride, (η5-C5H7)Ru(PPh3)2Cl (1) under first order conditions proceeds rapidly in THF at room temperature. A pseudo-first order rate constant of 17 ± 2 × 10−4 s−1 is obtained for the reaction at 21 °C. The rate constant is essentially independent of the phosphine concentration. The activation parameters, ΔH = 16.1 ± 0.4 kcal mol−1 and ΔS = −16 ± 1 cal K−1 mol−1 differ from those reported for phosphine exchange in CpRu(PPh3)2Cl (2) and (η5-indenyl)Ru(PPh3)2Cl (3). The reaction of 1 with PMe2Ph is about 70 times faster than the reaction of 2 at 30 °C and some 40 times faster than the reaction of 3 at 20 °C. (η5-C5H7)Ru(PPh3)2Cl(1) is more active than the ruthenium(II) complexes 2, 3, and TpRu(PPh3)2Cl (4) in the catalytic dimerization of terminal alkynes with nearly quantitative conversion of PhCCH and FcCCH at ambient temperature in 24 h. The enhanced substitution rate is accompanied by >50% conversion of phenylacetylene to oligomeric products. Reaction of 1 with NaPF6 in acetonitrile yields the cationic ruthenium(II) complex [(η5-C5H7)Ru(PPh3)2(CH3CN)][PF6] (7). The latter complex is much less active in reactions with phenylacetylene than 1 but avoids the formation of oligomeric products.  相似文献   

9.
A series of N-(2-pyridyl)benzamides (1)-(11) and their nickel complexes, [N-(2-pyridyl)benzamide]dinickel(II) di-μ-bromide dibromide (12)-(16) and (aryl)[N-(2-pyridyl)benzamido](triphenylphosphine)nickel(II) (17)-(24), were synthesized and characterized. The single-crystal X-ray analysis revealed that 12 and 14 are binuclear nickel complexes bridged by bromine atoms and each nickel atom adopts a distorted trigonal bipyramidal geometry. The key feature of the complexes 17, 19 and 23 is each has a six-membered nickel chelate ring including a deprotonated secondary nitrogen atom and an O-donor atom. The nickel complexes show moderate to high catalytic activity for ethylene oligomerization with methylaluminoxane (MAO) as cocatalyst. The activity of 12-16/MAO systems is up to 3.3 × 104 g mol−1 h−1 whereas for 17-24/MAO systems it is up to 4.94 × 105 g mol−1 atm−1 h−1. The influence of Al/Ni molar ratio, reaction temperature, reaction period and PPh3/Ni molar ratio on catalytic activity was investigated.  相似文献   

10.
The novel compounds, N-(trifluorosilylmethyl)-[N-(S)-(1-phenylethyl)]-acetamide (1a) and 1-(trifluorosilylmethyl)-2-oxoperhydroazepine (1b) have been prepared from the corresponding NH-compounds using ClCH2SiCl3/Et3N or ClCH2SiCl3/(Me3Si)2NH followed by methanolysis or hydrolysis of the reaction mixture in the presence of Lewis bases, and then BF3 etherate. Potassium-(18-crown-6)-(2-oxoperhydroazepinomethyl)tetrafluorosilicate (2) was synthesized by reaction of the trifluoride (1b) with KF in the presence of 18-crown-6. Using 19F, 29Si NMR and X-ray diffraction techniques it was established that the silicon atom is pentacoordinate in the trifluorides (1ab) and hexacoordinate in the adduct 2. Thus the internal coordination of the O → Si bond present in the trifluoride (1b) is retained in the adduct 2.The stereochemical non-rigidity of the trifluorides (1ab) and the N-(trifluorosilylmethyl)-N-methylacetamide (1c) was investigated using dynamic 19F NMR spectroscopy. The activation barriers for permutational isomerization are in the range 9.5-10 kcal mol−1. Lower values of ΔG# for permutation of trifluorides (1a-c) compared to the monofluorides with the coordination core OSiC3F together with small negative values for the activation entropy implies a non-dissociative mechanism. Quantum-chemical analysis suggests a mechanism involving a turnstile rotation.  相似文献   

11.
Series of 2-benzoxazole-1,10-phenanthrolines (L1-L4) and 2-oxazoline-1,10-phenanthrolines (L5-L8) were synthesized and used as tridentate N^N^N ligands in coordinating with metal (nickel, cobalt or iron) chlorides. Their metal complexes, nickel(II) (Ni1-Ni8), cobalt(II) (Co1-Co8) and iron(II) (Fe1-Fe8), were characterized by elemental and IR spectroscopic analyses. The molecular structures of the ligand L2 and the complexes Ni3, Co1, Co3 and Fe2 have been determined by the single-crystal crystallography. The nickel complex Ni3 and iron complex Fe2 display an octahedral geometry, whereas cobalt complex Co1 is with a distorted bipyramidal geometry and Co3 as square pyramidal geometry. At 10 atm ethylene, all the complexes showed good activities in ethylene dimerization upon activation with appropriate aluminum cocatalysts; the nickel complexes gave the activity up to 3.11 × 106 g mol−1(Ni) h−1 upon activation with diethylaluminum chloride (Et2AlCl), meanwhile the cobalt and iron complexes showed activities up to 1.51 × 106 g mol−1(Co) h−1 and 1.89 × 106 g mol−1(Fe) h−1, individually, upon activation with modified methylaluminoxane (MMAO).  相似文献   

12.
A series of nickel (II) complexes (L)NiCl2 (7-9) and (L)NiBr2 (10-12) were prepared by the reactions of the corresponding 2-carboxylate-6-iminopyridine ligands 1-6 with NiCl2 · 6H2O or (DME)NiBr2 (DME = 1,2-dimethoxyethane), respectively. All the complexes were characterized by IR spectroscopy and elemental analysis. Solid-state structures of 7, 8, 10, 11 and 12 were determined by X-ray diffraction. In the cases of 7, 8 and 10, the ligands chelate with the nickel centers in tridentate fashion in which the carbonyl oxygen atoms coordinate with the metal centers, while the carbonyl oxygen atoms are free from coordinating with the nickel centers in 11 and 12. Upon activation with methylaluminoxane (MAO), these complexes are active for ethylene oligomerization (up to 7.97 × 105 g mol−1 (Ni) h−1 for 11 with 2 equivalents of PPh3 as auxiliary ligand) and/or polymerization (1.37 × 104 g mol−1 (Ni) h−1 for 9). The ethylene oligomerization activities of 7-12 were significantly improved in the presence of PPh3 as auxiliary ligands. The effects of the coordination environment and reaction conditions on the ethylene catalytic behaviors have been discussed.  相似文献   

13.
A series of N-arylimines of β-tellurocyclohexenals 11 have been synthesized and the molecular and crystal structures of the compounds 11a-e and also β-(dimethyltelluronium)cyclohexenal perchlorate 12 studied by X-ray crystallography. All the compounds contain strong intramolecular coordination N → Te (O → Te) bonds of the hypervalent type. In 11a-e, the lengths of the N → Te bonds are within the range of 2.690-2.147 Å and are 1.0-1.5 Å shorter than the sum of the van der Waals radii of respective atoms. In the N-arylimines 11b-e with the electronegative groups attached to the tellurium center, the lengths of the N → Te bonds are very close to that characteristic of a standard covalent N-Te bond. The experimental observed geometries are well reproduced by the DFT calculations performed at B3LYP/LanL2DZ level of approximation. The energies of the intramolecular coordination N → Te bonds vary from 23 kJ mol−1 for 11a to 119 kJ mol−1 for 11e. The calculated energy of the O → Te bond in 12 was found to be 50 kJ mol−1. The 125Te NMR chemical shifts of compounds 11 span the wide range of 734.3-1622.4 ppm. The largest downfield 125Te NMR chemical shifts are observed in the case of the compounds 11e, f in which the most electronegative atoms are attached to the tellurim centers.  相似文献   

14.
Synthesis of aromatic poly(ether ketone) (3) with a narrow molecular weight distribution (Mw/Mn) was investigated via polycondensation. Mns of 3 could be controlled varying the feed ratio of monomer (1) and initiator (2) maintaining relatively narrow Mw/Mns (<1.3). The kinetics of polycondensation obeyed a first-order relationship between polycondensation time and -(1/[2]0) ln([1]/[1]0), and the rate of polycondensation was estimated as 2.57 mol−1 L h−1. MALDI-TOF mass analysis of 3 indicated that polycondensation should proceed via chain growth manner to give 3 having an initiator unit in each chain end.  相似文献   

15.
Resorcin[4]arene-based tetramidocavitands containing four secondary amide groups on their upper rim showed strong (R = methyl or ethyl) binding properties. The caviplex formation through hydrogen bonds of -(CO)N-H?X was supported by 1H NMR and crystal structure analyses. In a mixture of C2D2Cl4/DMSO/D2O = 5:15:2 at 25 °C, the thermodynamic parameters for caviplex @1, ΔG (kcal mol−1), ΔH (kcal mol−1), and ΔS (cal K−1 mol−1), are −3.7, −8.6, and −16.7, respectively.  相似文献   

16.
The kinetic and thermodynamic parameters for regioisomerisation of 2-methyl- and 2,6-dimethyl-derivatives of tricarbonyl[η4-tropone]iron complexes have been studied by 1H NMR spectrometry over a range of 40 °C. Regioisomerisation of these complexes proceeds by an intramolecular first-order process and results in the almost complete conversion of the less stable complexes (48) to more stable regioisomers (15). The activation energies and half lifes for the conversion (4 → 1) and (8 → 5) were found to be ΔG#=92 kJ mol−1; τ1/2=12.8 h, and ΔG#=107 kJ mol−1; τ1/2=26.8 h, respectively, at 23 °C. Complex 1 reacts with (1R,2S,5R)-menthol in sulphuric acid solution, followed by neutralisation with sodium carbonate to give a separable mixture of diastereomeric tricarbonyl[(2,3,4,5-η)-(1R,2S,5R)-6-menthyloxy-2-methyltropone]iron complexes, 9 and 10. The corresponding dimethylated complex 5 fails to react under these conditions.  相似文献   

17.
The novel nickel(II) (1) and copper(II) (2) complexes bearing 2′-(4′,6′-di-tert-butylhydroxy-phenyl)-1,4,5-triphenyl imidazole ligand have been synthesized and characterized. The molecular structure analyses of complexes 1 and 2 indicated that Ni(II) centre in 1 adopts a distorted tetrahedral coordination geometry with a dihedral angle of 85.2° between Ni(1)O(1)N(1) plane and Ni(1)O(1A)N(1A) plane, while the Cu(II) centre in 2 represents a distorted square planar coordination geometry with a cis-N2O2 arrangement of the donor atoms, the dihedral angle being 32° between Cu(1)O(1)N(1) plane and Cu(1)O(1A)N(1A) plane. After activation with methylaluminoxane (MAO), both Ni(II) and Cu(II) complexes can be used as catalysts for the addition polymerization of norbornene (NB). The polynorbornenes (PNBs) are produced with very high polymerization activity (108 g PNB mol−1 Ni h−1) for Ni(II) complex and moderate catalytic activity (105 g PNB mol−1 Cu h−1) for Cu(II) complex, respectively. The high molecular weight polynorbornenes (106) are obtained for complexes 1 and 2. Moreover, the distinct effects of polymerization temperature and Al/M ratio on catalytic activities and molecular weights of polymers are discussed.  相似文献   

18.
19.
Four cyclometalated Pt(II) complexes, i.e., [(L2)PtCl] (1b), [(L3)PtCl] (1c), [(L2)PtCCC6H5] (2b) and [(L3)PtCCC6H5] (2c) (HL2 = 4-[p-(N-butyl-N-phenyl)anilino]-6-phenyl-2,2′-bipyridine and HL3 = 4-[p-(N,N′-dibutyl-N′-phenyl)phenylene-diamino]-phenyl-6-phenyl-2,2′-bipyridine), have been synthesized and verified by 1H NMR, 13C NMR and X-ray crystallography. Unlike previously reported complexes [(L1)PtCl] (1a) and [(L1)PtCCC6H5] (2a) (HL1 = 4,6-diphenyl-2,2′-bipyridine), intense and continuous absorption bands in the region of 300-500 nm with strong metal-to-ligand charge transfer (1MLCT) (dπ(Pt) → π(L)) transitions (ε ∼ 2 × 104 dm3 mol−1 cm−1) at 449-467 nm were observed in the UV-Vis absorption spectra of complexes 1b, 1c, 2b and 2c. Meanwhile, with the introduction of electron-donating arylamino groups in the ligands of 1a and 2a, complexes 1b and 2b display stronger phosphorescence in CH2Cl2 solutions at room temperature with bathochromically shifted emission maxima at 595 and 600 nm, relatively higher quantum yields of 0.11 and 0.26, and much longer lifetimes of 8.4 and 4.5 μs, respectively. An electrochromic film of 1b-based polymer was obtained on Pt or ITO electrode surface, which suggests an efficient oxidative polymerization behavior. An orange multilayer organic light-emitting diode with 1b as phosphorescent dopant was fabricated, achieving a maximum current efficiency of 11.3 cd A−1 and a maximum external efficiency of 5.7%. The luminescent properties of complexes 1c and 2c are dependent on pH value and solvent polarity, which is attributed to the protonation of arylamino units in the C^N^N cyclometalating ligands.  相似文献   

20.
Two half-sandwich rhodium complexes with sulfur or oxygen functionalized cyclopentadienyl ligands [η5-C5H4(CH2)2SCH2CH3]RhI23, {[η5-C5H4(CH2)2OCH3]RhI2}24 have been synthesized and characterized by IR, 1H-NMR spectra and Elemental analyses. The molecular structures of complexes 3 and 4 have been determined by X-ray crystallographic analysis. Complexes 3, 4 with a pendent arm on cyclopentadienyl ligand have been tested as catalysts for ethylene and norbornene polymerization in the presence of MAO. Complexes 3 and 4 kept high activities of ca. 106 g PE mol−1 Rh h−1 with morderate molecular weight (Mw ≈ 105 g mol−1) of polyethylene in the ethylene polymerization. Catalytic activities, molecular weights of polyethylene have been investigated under the various reaction conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号