首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To synthesize (3′R,5′S)-3′-hydroxycotinine [(+)-1], the main metabolite of nicotine (2), cycloaddition of C-(3-pyridyl)nitrones 3a, 3c, and 15 with (2R)- and (2S)-N-(acryloyl)bornane-10,2-sultam [(2R)- and (2S)-8] was examined. Among them, l-gulose-derived nitrone 15 underwent stereoselective cycloaddition with (2S)-8 to afford cycloadduct 16, which was elaborated to (+)-1.  相似文献   

2.
Epoxidations of trans-β-methylstyrene, trans-stilbene and trans-methyl p-methoxycinnamate using chiral dioxiranes derived from both enantiopure diastereomers of α-fluoro cyclohexanones, (2S, 5R)-3a-6a and (2R, 5R)-3e-6e are studied and compared. From ab initio calculations at the HF/6-31G level of conformational inter-conversion for (2S, 5R)-D5a and (2R, 5R)-D5e dioxiranes it was found that, due to the α-fluorine atom, conformer K1 is more stable in the case of (2S, 5R)-D5a while conformer K2 is more stable in the case of (2R, 5R)-D5e. However, in both cases, the more stable conformers, K1 and K2, undergo rapid inter-conversion. Therefore, based on slow epoxidation reactions and rapid ring inversion of six-membered ring dioxiranes the Curtin-Hammett principle holds. Conformation K2 with axial fluorine having been found to be more reactive, the inversion of configuration observed for the epoxides obtained with ketones 3e-6e (compared with ketones 3a-6a) could be rationalized from competitive reactions of K2 and K1 conformations leading to simultaneous production of both (−) and (+) epoxides in the case of ketones 3e-6e.  相似文献   

3.
We have reported that our new axially dissymmetric ligand with two chiral centers, (Ra)-2,2′-bis[(R)-1H-1-hydroxyperfluorooctyl]biphenyl ((Ra)-(R)2-1c, or tentatively called as (Ra)-(R)2-PFCAB-7), worked as a good asymmetric inducer for the reaction of benzaldehyde with diethylzinc. Now, a mixture of (Ra)-(R)2- and (Sa)-(R)2-PFCAB-7 even in 1:4 ratio (−60% de) was found to give nearly the same asymmetric induction as pure (Ra)-(R)2-PFCAB-7 of the corresponding molar percents. This result suggests that both isomers do not form complex and that (Ra)-(R)2-PFCAB-7 accelerates the reaction and induces high asymmetry, while (Sa)-(R)2-1c does not accelerate the reaction significantly and does not induce asymmetry at all. This ligand of low ee, (Ra)-(R)2-PFCAB-7 of 20% ee, did not show appreciable asymmetric amplification, suggesting no formation of heterochiral complex.  相似文献   

4.
Mikio Fujii  Hiroyuki Akita 《Tetrahedron》2008,64(22):5147-5149
The concise synthesis of (8aR)-(−)-albaconol (1) from (8aR)-albicanol (2) obtained from the lipase-assisted asymmetric acetylation of rac-2, was achieved in 45% overall yield (eight steps). By comparison of the sign of specific rotation of between synthetic (8aR)-(−)-albaconol (1) and natural (+)-albaconol (1), the absolute structure of natural (+)-1 was determined to be 1R,2R,4aS,8aS configuration.  相似文献   

5.
Chiral conjugated polymers P-1 and P-2 were synthesized by the polymerization of (R)-3,3′-diiodo-2,2′-bisbutoxy-1,1′-binaphthalene ((R)-M-1) and (S)-3,3′-diiodo-2,2′-bisbutoxy-1,1′-binaphthalene ((S)-M-1) with 2,5-bis(4-vinylphenyl)-1,3,4-oxadiazole (M-2) under Pd-catalyzed Heck coupling reaction, respectively. Both monomers and polymers were analysed by NMR, MS, FT-IR, UV, DSC-TG, fluorescent spectroscopy, GPC and CD spectra. The chiral conjugated polymers exhibit strong Cotton effect in their circular dichroism (CD) spectra indicating a high rigidity of polymer backbone. CD spectra of polymers P-1 and P-2 are almost identical and have opposite signs for their position. These polymers have strong blue fluorescence.  相似文献   

6.
The irradiation of the title compounds [(Z)-1] having (S)-(+)-sec-butyl, (−)-mentyl and related chiral auxiliaries in methanol and 1,2-dichloroethane containing 2-(diethylamino)ethanol afforded chiral auxiliary-substituted (4S,5S)-, (4R,5R)-, (4R,5S)- and (4S,5R)-4,5-dihydrooxazole derivatives (2) along with (E)-1. It was found that the photoinduced electron transfer-initiated cyclization of 1 gives either of the two diastereomers for cis-2 and trans-2 in diastereomeric excess whose value varies from 6% to 81% depending on solvent and chiral auxiliary.  相似文献   

7.
The high-pressure asymmetric Diels-Alder reactions of d-galacto- (1a) and d-manno-3,4,5,6,7-penta-O-acetyl-1,2-dideoxy-1-nitrohept-1-enitol (1b) with 2,5-dimethylfuran (2) afforded mixtures of cycloadducts, from which the (2S,3R)-3-exo-nitro (3a and 3b), (2R,3S)-3-exo-nitro (4a and 4b), and (2R,3S)-1′,2′,3′,4′,5′-penta-O-acetyl-1′-C-(1,4-dimethyl-3-endo-nitro-7-oxabicyclo[2.2.1]hept-5-en-2-exo-yl)-d-galacto-pentitol (5b) were isolated pure. Deacetylation of these compounds led to new chiral mono-, bi-, and tricyclic ethers, being their asymmetric centers arising from the chiral inductor used in the cycloaddition reaction. A ring opening mechanism through a 1-nitro-1,3-cyclohexadiene intermediate has been proposed.  相似文献   

8.
Nine 2-substituted pyrrolidin-4-ones 4a-i were obtained via a series of functional group transformation of known prolinol 5 by facile six kinds of methodologies. The target structure of 1,3-amino alcohols 2a-i was constructed in the regioselective Baeyer-Villiger lactonization of ketones 4a-i and reduction of the resulting 4-substituted tetrahydro-1,3-oxazin-6-ones 3a-i. A new and straightforward synthesis of (3S,4S)-statine (6) has been established starting from trans-(2S,4R)-4-hydroxyproline (1).  相似文献   

9.
A convenient synthesis method of antisepsis agent TAK-242 ((R)-1) through diastereomeric resolution was developed. By condensation of racemate rac-1 with chiral acid (S)-O-acetylmanderic acid (6a), the desired diastereomer 5a was isolated with 98% de in 39% yield by simple crystallization. Deacylation of 5a with aq NaOH followed by recrystallization provided (R)-1 with 99% ee in 20% yield from rac-1.  相似文献   

10.
11.
Two bioactive compounds, viz. 4-methylheptan-3-ol (I) and 4-methylheptan-3-one (II) have been identified in European oak bark beetle (Scolytus intricatus) extracts by gas chromatography coupled with mass spectrometric and electroantennographic detector systems. Further examination of these compounds using gas chromatography on chiral stationary phases, as well as a comparison with optically active standards proved the absolute configuration of the identified compounds to be (3R,4S)-I and (S)-II. The discovery of (3R,4S)-I and (S)-II as insect-produced compounds in both sexes of S. intricatus constitutes the first reported occurrence in this species.  相似文献   

12.
Reaction paths of the one-pot reaction of (R)-2-(α-methylbenzyl)amino-1,3-propanediol (1) and 2-chloroethyl chloroformate with DBU giving (4SR)-4-hydroxymethyl-3-(α-methylbenzyl)-2-oxazolidinone [(4S)-2] (94% de) were investigated. Intermediates of this reaction, 2-chloroethyl (2S)- and 2-chloroethyl (2R)-3-hydroxy-2-[(αR)-α-methylbenzyl]aminopropyl carbonates [(2S)-4 and (2R)-4], were synthesized individually. After the addition of DBU to the respective solution of the carbonate (2S)-4 and that of (2R)-4 in dichloromethane, the intramolecular transesterification between (2S)-4 and (2R)-4 and the diastereoselective intramolecular cyclization proceeded to afford (4S)-2 in high diastereomeric excess. Therefore, two monocarbonates (2S)-4 and (2R)-4 were kinetically resolved by this cyclization during the intramolecular transesterification between (2S)-4 and (2R)-4. We found that this process involved dynamic kinetic resolution accompanied by intramolecular transesterification.  相似文献   

13.
Tetrahydroisoquinoline alkaloids, (S)-(−)-trolline, (R)-(+)-crispin A, and (R)-(+)-oleracein E, have been synthesized stereoselectively from the both enantiomers of common intermediate (S)-4 and (R)-4. The key step in the synthesis include a stereoselective Bi(OTf)3-catalyzed intramolecular 1,3-chirality transfer reaction of chiral non-racemic amino allylic alcohols (S)-6 and (R)-6 to construct both enantiomers of (E)-1-propenyl tetrahydroisoquinoline 4.  相似文献   

14.
All four stereoisomers of 4,8-dimethyldecanal (1) were synthesized from the enantiomers of 2-methyl-1-butanol and citronellal. Enantioselective GC analysis enabled separation of (4R,8R)-1 and (4R,8S)-1 from a mixture of (4S,8R)-1 and (4S,8S)-1, when octakis-(2,3-di-O-methoxymethyl-6-O-tert-butyldimethylsilyl)-γ-cyclodextrin was employed as a chiral stationary phase. Complete separation of the four stereoisomers of 1 on reversed-phase HPLC at −54 °C was achieved after oxidation of 1 to the corresponding carboxylic acid 12 followed by its derivatization with (1R,2R)-2-(2,3-anthracenedicarboximido)cyclohexanol, and the natural 1 was found to be a mixture of all the four stereoisomers.  相似文献   

15.
Condensation of the O-protected hydroxyferrocene carbaldehyde (Sp)-1 with suitable diamines, followed by liberation of the hydroxyferrocene moiety leads to a new type of ferrocene-based salen ligands (3). While the use of ethylenediamine in the condensation reaction yields the planar-chiral ethylene-bridged ligand [(Sp,Sp)-3a], reaction with the enantiomers of trans-1,2-cyclohexylendiamine gives rise to the corresponding diastereomeric cyclohexylene-bridged systems [(S,S,Sp,Sp)-3b and (R,R,Sp,Sp)-3c], which feature a combination of a planar-chiral ferrocene unit with a centrochiral diamine backbone. Starting with the ferrocene-aldehyde derivative (Rp)-1, the enantiomeric ligand series (3d/e/f) is accessible via the same synthetic route.The (Sp)-series of these newly developed N2O2-type ligands was used for the construction of the corresponding mononuclear bis(isopropoxy)titanium (4a/b/c), methylaluminum (5a/b/c) and chloroaluminum-complexes (6a/b/c), which were isolated in good yields and identified by X-ray diffraction in several cases. The aluminum complexes (5/6) were successfully used in the Lewis-acid catalyzed addition of trimethylsilylcyanide to benzaldehyde, yielding the corresponding cyanohydrins in 45-62% enantiomeric excess.  相似文献   

16.
Enantioenriched tertiary homoallylic alcohol derivatives (S)-2c and (S)-2a were obtained via Evans aldol methodology and enzymatic resolution of racemic tertiary acetate 2e, respectively. In order to study asymmetric 1,3-induction of the stereogenic center present in 2, congener (R)-2a as well as its O-protected derivatives (R)-2b-d were submitted to Sharpless asymmetric dihydroxylation to yield the diastereomeric 1,2,4-triol derivatives (2R,4R)- and (2S,4R)-3a-d, revealing that neither the substrate nor the Sharpless catalyst exert any stereocontrol. Similar observations were made for the less bulky alkynyl-substituted derivative 12b. However, by using a directed dihydroxylation, the anti product (2R,4R)-3a was favored.  相似文献   

17.
(1R,2S,3S,5R,7aR)-1,2-Dihydroxy-3-hydroxymethyl-5-methylpyrrolizidine[(−)-3-epihyacinthacine A5, 1a] and (1S,2R,3R,5S 7aS)-1,2-dihydroxy-3-hydroxymethylpyrrolizidine[(+)-3-epihyacinthacine A5, 1b] have been synthesized either by Wittig's or Horner-Wadsworth-Emmond's (HWE's) methodology using aldehydes 4 and 9, both prepared from (2S,3S,4R,5R)-3,4-dibenzyloxy-2′-O-tert-butyldiphenylsilyl-2,5-bis(hydroxymethyl)pyrrolidine (2, partially protected DADP), and the appropriate ylides, followed by cyclization through an internal reductive amination process of the resulting α,β-unsaturated ketones 5 and 10, respectively, and total deprotection.  相似文献   

18.
The resolution by Lipase PS of rac-5 (from reduction of ketone 6, obtained from dicyclopentadiene with a new environment-friendly synthesis) gives (2S)-5, which was further reduced to the endo(2R)-1a alcohol. The endo(2S)-1b alcohol was obtained from camphor with a multistep synthesis. Pinacol couplings of 3a,b, carried out with Mg/Hg or Corey's general procedure respectively, afforded with high diastereoselectivity the C2 symmetry diols (2R,2′R)-2a and (2S,2′S)-2b, with endo oriented OH functions. The enantiogenic power of the endo alcohol (2R)-1a and (2S)-1b and of the diols (2R,2′R)-2a and (2S,2′S)-2b was tested towards the LiAlH4 reduction of acetophenone. The C2 symmetry appears to play a fundamental role.  相似文献   

19.
A diastereoselective approach to (2R,5S)- and (2S,5S)-2-methyl-1,6-dioxaspiro[4.5]decane 1 and 1a is described. The route starts with an alkylation reaction among the cyclopentanone N,N-dimethylhydrazone 6 and the chiral iodides (R)-3 or (S)-3, derived from the enantiomers of ethyl β-hydroxybutyrate, controlling the estereocenter at C-2 of the molecules. The alkylated products 7 and 7a were easily transformed into the 1,8-O-TBS-1,8-dihydroxy-5-nonanones 9 and 9a in four steps, and a subsequent stereoselective spiroketalization, in acidic media, afforded a Z:E mixture (1:2) of compounds 1 and 1a.  相似文献   

20.
A set of new diastereopure unsymmetrical α-diimine ligands 2a-d derived from methylglyoxal and optically pure primary amines 1a-d afforded the new chiral Pd(II)-complexes (S,S)-3a, (S,S)-3b, (S,S)-3c, and (1S, 2S, 3S, 5R)-3d. All compounds have been characterized by IR, 1H, and 13C NMR spectroscopies along with MS-FAB+ spectrometry. The crystal and molecular structure for the complexes 3a, 3b and 3d have been fully confirmed by single-crystal X-ray studies. Likewise, complexes 3a-d have also been screened for their in vitro cytotoxicity against different classes of cancer: leukemia (K-562 CML), colon cancer (HCT-15), human breast adenocarcinoma (MCF-7), central nervous system (U-251 Glio) and prostate cancer (PC-3) cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号