首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
l-(N-Cbz)-7-azaisotryptophan, l-(N-Cbz)-1a, a new isostere of tryptophan, was synthesized by reacting Li2-(N-Boc)-2-amino-3-picoline, Li2-(N-Boc)-2a, with appropriately protected l-aspartic acid followed by simple functional group manipulation. This synthetic success led us to access a set of analogs of azaisotryptophan (4ac; 6ac) as well as a new class of chiral amines (7ac; 8ac) for future application in asymmetric synthesis and design of homochiral ligands. Further, we have generalized the method substantiating a variety of new azaindol-2-yl derivatives (10aa10lc) with functionalized substituents. In a preliminary luminescence characterization, l-(N-Cbz)-1a has exhibited about 30 nm bathochromic shifted fluorescence emission compared to tryptophan and (N-Cbz)-tryptophan.  相似文献   

2.
Intramolecular N-alkylation of 2,3-O-isopropylidene-5-O-methanesulfonyl-6-O-t-butyldimethylsilyl-d-mannofuranose-oxime 7 afforded a five-membered cyclic nitrone 9, which on N-O bond reductive cleavage followed by deprotection of -OTBS and acetonide functionalities gave 1,4-dideoxy-1,4-imino-l-allitol (DIA) 3. Addition of allylmagnesium chloride to nitrone 9 afforded α-allylated product 10a in high diastereoselectivity providing an easy entry to N-hydroxy-C1-α-allyl-substituted pyrrolidine iminosugar 4a after removal of protecting group, while N-O bond reductive cleavage in 10a afforded C1-α-allyl-pyrrolidine iminosugar 4b.  相似文献   

3.
The Baylis-Hillman reaction of 3-O-benzyl-α-d-xylo-pentodialdo-1,4-furanose 2 afforded a diastereomeric mixture of l-ido- and d-gluco-configurated α-methylene-β-hydroxy esters 3a and 3b, respectively, in 1:1 ratio. Conjugate addition of benzyl amine on 3a gave adduct 4a as a major product while, addition of benzyl amine to 3b gave only one diastereomer 4b. Reduction of ester functionality in 4a/4b, opening of 1,2-acetonide functionality followed by reductive amino-cyclization under hydrogenation condition afforded azocanes 1c/1d in good yield.  相似文献   

4.
d-Ribono-1,4-lactone was treated with ethylamine in DMF to afford N-ethyl-d-ribonamide 9a in quantitative yield. Bromination of amide 9a by the system SOBr2 in DMF or PPh3/CBr4 in pyridine led, after acetylation, to epoxide 7. However, treatment of amide 9a with acetyl bromide in dioxane followed by acetylation gave 2,3,4-tri-O-acetyl-5-bromo-5-deoxyl-N-ethyl-d-ribonamide 10a. Methanolysis of 10a, with sodium methoxide, afforded the N-ethyl-d-ribonolactam 11a in 51% overall yields. Using this method, N-butyl, N-hexyl, N-dodecyl, and N-benzyl-d-ribonolactams 11b-e were obtained in good yields (48-53%).  相似文献   

5.
N-Allyl protected 3-O-benzyloxglutarimide 11 was synthesized as a useful variant of the chiral building block 10. This modification allowed a high-yielding deprotection of the allyl group from the lactam intermediate 14. Starting from this building block, the asymmetric syntheses of aza-sugars 6-deoxyfagomine (2), d-rhamnono-1,5-lactam (6), as well as d-deoxyrhamnojirimycin (5) have been achieved in high regio- and/or diastereo-controlled manner.  相似文献   

6.
The geometry and energy profiles of the mutarotation pathway present in the equilibrium of 6-deoxy-β-l-mannopyranosyl 2,4-dinitrophenylhydrazine (1a), 6-deoxy-l-mannose 2,4-dinitrophenylhydrazone (1b), and 6-deoxy-α-l-mannopyranosyl 2,4-dinitrophenylhydrazine (1c) were modeled by DFT calculations at B3LYP/6-31G(d) level affording ΔGDFT=0.000 kcal/mol, ΔGDFT=0.174 kcal/mol, and ΔGDFT=3.411 kcal/mol, respectively. Experimentally, the β-l-pyranose 1a occurs in 50% followed by the acyclic structure 1b in 44% as well as by the α-l-anomer 1c in 6%. The conformations of 1a-c and their corresponding 2,3,4-triacetyl derivatives 2a-c were studied by molecular modeling and NMR spectroscopy. IR frequencies, NMR chemical shifts, and X-ray diffraction analysis were employed to compare theoretical with experimental structural parameters.  相似文献   

7.
Generally applicable concise approaches to 3-O-acyl-l-noviose derivatives and their 3-amino bioisosteres, represented by 5 and 6, were described. Chiral aldehyde 7 was thus prepared from dimethyl l-tartrate in five steps, and converted into 5 and 6 by employing substrate induced asymmetric aldehyde or N-sulfinyl aldimine allylation and dihydropyrane epoxidation as key steps, respectively.  相似文献   

8.
Completely protected 4-deoxy-α-L-threo-hex-4-enopyranosides 1c,d undergo the dichlorocarbene addition affording exclusively diastereomeric adducts 5c,d with the cyclopropane ring anti to the C-3 alkyloxy substituent, while the reaction with 3-unprotected derivatives 1a,b affords a mixture of syn and anti derivatives. Under the Simmons-Smith cyclopropanation adducts 2a-d with a syn stereochemistry are obtained. Starting from 5b, the cyclopropanated sugar 3b is obtained by reduction with LiAlH4, thus the two diastereomers 2b and 3b can be stereoselectively obtained through the two different pathways. For a useful comparison, 4-deoxy-β-L-threo-hex-4-enopyranoside 1e was also subjected to the above two cyclopropanation methods affording the expected cycloadduct 2e and a diastereomeric mixture of dichlorocycloadducts 4e and 5e (4e/5e=2.8:1).  相似文献   

9.
Valeria Di Bussolo 《Tetrahedron》2007,63(11):2482-2489
The glycosylation of alcohols, phenol, and partially protected monosaccharides with the diastereoisomeric d-allal and d-galactal-derived N-nosyl aziridines and leads to the corresponding 4-N-(nosylamino)-2,3-unsaturated-α-O- () and β-O-glycosides and disaccharides (), respectively, in a stereospecific substrate-dependent O-glycosylation process. The N-(nosylamino) group of and  can easily be deprotected to give the corresponding 4-amino-2,3-unsaturated-O-glycosides and , with an increased value to our glycosylation protocol.  相似文献   

10.
We report herein an asymmetric synthesis of the modified amino acid N-Cbz-l-BMAA and seven of its alkyl derivatives (2a-h) from N-Cbz-l-serine via ring-opening of the β-lactone (formed under modified Mitsunobu conditions) by different amines. This procedure is simple, one-pot and can generate various derivatives that can be investigated for their toxicological effects. In addition, it can be employed to produce analytical standards for water monitoring as well as labeled compounds for biotransformation studies. This toxin has been the focus of serious ecological and public concern since its implication in degenerative disease such as Alzheimer and Parkinsonism dementia.  相似文献   

11.
Sugar intermediates 4-C-methyl-2,3,5-tri-O-benzyl-d-ribofuranose (8b) and 4-C-methyl-2,3,5-tri-O-benzyl-l-lyxofuranose (8a) were synthesized by addition of alkylithium reagents to pentanones 3a,b. The nucleophilic additions proceeded with good stereoselectivity and good yields to give the titled compounds in four steps from perbenzylated methyl d-ribofuranoside and methyl 5′-deoxy-d-ribofuranoside.  相似文献   

12.
The readily available 3-O-benzyl-1,2-O-isopropylidene-β-d-fructopyranose (2) was transformed into its 5-O- (3) and 4-O-benzoyl (4) derivative. Compound 4 was straightforwardly transformed into 5-azido-4-O-benzoyl-3-O-benzyl-5-deoxy-1,2-O-isopropylidene-β-d-fructopyranose (7) via the corresponding 5-deoxy-5-iodo-α-l-sorbopyranose derivative 6. Cleavage of the acetonide in 7 to give 8, followed by regioselective 1-O-silylation to 9 and subsequent catalytic hydrogenation gave a mixture of (2S,3R,4R,5R)- (10) and (2R,3R,4R,5R)-4-benzoyloxy-3-benzyloxy-2′-O-tert-butyldiphenylsilyl-2,5-bis(hydroxymethyl)pyrrolidine (12) that was resolved after chemoselective N-protection as their Cbz derivatives 11 and 1a, respectively. Stereochemistry of 11 and 1a could be determined after total deprotection of 11 to the well known DGDP (13). Compound 2 was similarly transformed into the tri-orthogonally protected DGDP derivative 18.  相似文献   

13.
The readily available 3-O-benzoyl-4-O-benzyl-1,2-O-isopropylidene-5-O-methanesulfonyl-β-d-fructopyranose (5) was straightforwardly transformed into its d-psico epimer (8), after O-debenzoylation followed by oxidation and reduction, which caused the inversion of the configuration at C(3). Compound 8 was treated with lithium azide yielding 5-azido-4-O-benzyl-5-deoxy-1,2-O-isopropylidene-α-l-tagatopyranose (9) that was transformed into the related 3,4-di-O-benzyl derivative 10. Cleavage of the acetonide in 10 to give 11, followed by regioselective 1-O-pivaloylation to 12 and subsequent catalytic hydrogenation gave (2R,3S,4R,5S)-3,4-dibenzyloxy-2,5-bis(hydroxymethyl)-2′-O-pivaloylpyrrolidine (13). Stereochemistry of 13 could be determined after O-deacylation to the symmetric pyrrolidine 14. Total deprotection of 14 gave 2,5-imino-2,5-dideoxy-d-galactitol (15, DGADP).  相似文献   

14.
The enantiomeric synthesis of l-cyclopentenyl nucleosides is described. The key intermediate (+)-cyclopentenyl alcohol (8) was prepared from methyl-α-d-galactopyranoside 1 using a ring closing metathesis reaction. Transformation of the allylic alcohol 8 into the allylic acetate (9) or carbonate (10), allows their coupling with purine and pyrimidine bases under Pd(0)-catalyzed Tsuji-Trost allylic alkylation's to yield 12a-c. The Pd catalyzed reaction was found to require the use of AlEt3.  相似文献   

15.
A chiral benzodiazepine derivative 1 was synthesized starting from o-nitrobenzoyl chloride and methyl l-prolinate hydrochloride. Diastereomeric (1R,2R,1′S)-(+)-2-[N-methyl-N-(α-phenylethyl)amino]cyclohexanol 3a and (1S,2S,1′S)-(+)-2-[N-methyl-N-(α-phenylethyl)amino]cyclohexanol 3b were synthesized starting from (S)-α-phenylethylamine and cyclohexene oxide via ring-opening, diastereomer separation and N-methylation. (S,S)-octahydrodipyrrolo[1,2-a:1′,2′-d]pyrazin 5 was synthesized from methyl l-prolinate. Chiral tertiary amines 1, 3a, 3b and 5 almost cannot catalyze the Baylis-Hillman reaction between o-nitrobenzaldehyde and methyl vinyl ketone (MVK). However, they functioned as efficient catalysts for this reaction in the presence of l-proline. The corresponding adducts were obtained in good yields with enantioselectivity of 83% ee, 81% ee, 51% ee and 66% ee, respectively.  相似文献   

16.
Diastereoselective synthesis of 1-epi-castanospermine (2) from l-sorbose is described. The successful approach involved the use of 8-azido-2,8-dideoxy-α-l-gulo-oct-4-ulo-4,7-furanosononitrile intermediate (17). This compound was easily made in five steps from 3-O-benzoyl-2-deoxy-4,5:6,8-di-O-isopropylidene-α-l-gulo-oct-4-ulo-4,7-furanosononitrile (7) previously synthesized from l-sorbose. Catalytic hydrogenation of the azido intermediate 17 with Pd-C afforded with total stereocontrol one of the two possible piperidine diastereomers. Acid-catalyzed internal reductive deamination of the nitrile derivative completed the total synthesis of (1R,6S,7R,8R,8aR)-1,6,7,8-tetrahydroxyindolizidine [(+)-1-epi-castanospermine, 2].  相似文献   

17.
A series of new 1,2/1,3-bis[o-(N-methylidenamino-5-aryl-3-thiol-4H-1,2,4-triazole-4-yl)phenoxy]alkane derivatives 3a-d and bis[o-(N-methylidenamino-2-thiol-1,3,4-thiadiazole-5-yl)phenoxy]alkanes 6a-c were prepared by condensation of 4-amino-5-(aroyl)-4H-1,2,4-triazole-3-thiols 2a-b or 2-amino-5-mercapto-1,3,4-thiadiazole with bis-aldehydes 1a-c. Further reaction of compounds 3a-d and 6a-c with dibromoalkanes afforded the new macrocycles 5a-f and 8a-d. The cyclization does not require high dilution techniques and provides the expected azathia macrocycles in good yields, ranging from 55% to 68%.  相似文献   

18.
The d-gluco-, l-ido-, d-galacto-, and l-altro-configured glycaro-1,5-lactams 1-4 were prepared from the known tartaric anhydride 5 via the aldehyde 6. These lactams are known (1) or potential (2-4) inhibitors of β-d-glucuronidases and α-l-iduronidases. Olefination of 6 to the (E)- and (Z)-alkenes 7 or 8, followed by reagent or substrate controlled dihydroxylation, lactonization, azidation, reduction, and deprotection led in 10 steps and in overall yields of 11-20% to the title lactams.  相似文献   

19.
Synthesis, structures, and catalysis studies of gold(I) complexes of N-heterocyclic carbenes namely, a di-O-functionalized [1-(2-hydroxy-cyclohexyl)-3-(acetophenone)imidazol-2-ylidene], a mono-O-functionalized [1-(2-hydroxy-cyclohexyl)-3-(benzyl)imidazol-2-ylidene] and a non-functionalized [1,3-di-i-propyl-benzimidazol-2-ylidene], are reported. Specifically, the gold complexes, [1-(2-hydroxy-cyclohexyl)-3-(acetophenone)imidazol-2-ylidene]AuCl (1c), [1-(2-hydroxy-cyclohexyl)-3-(benzyl)imidazol-2-ylidene]AuCl (2c), and [1,3-di-i-propyl-benzimidazol-2-ylidene]AuCl (3b), were prepared from the respective silver complexes 1b, 2b, and 3a by treatment with (SMe2)AuCl in good yields following the commonly used silver carbene transfer route. The silver complexes 1b, 2b, and 3a were synthesized from the respective imidazolium halide salts by the reactions with Ag2O. The N-heterocyclic carbene precursors, 1-(2-hydroxy-cyclohexyl)-3-(acetophenone)imidazolium chloride (1a) and 1-(2-hydroxy-cyclohexyl)-3-(benzyl)imidazolium chloride (2a), were synthesized by the direct reactions of cyclohexene oxide and imidazole with chloroacetophenone and benzyl chloride respectively. The gold (1c, 2c, and 3b) and the silver (3a) complexes along with a new O-functionalized imidazolium chloride salt (1a) have been structurally characterized by X-ray diffraction. The structural studies revealed that geometries around the metal centers were almost linear in these gold and silver complexes. The gold (1c, 2c, and 3b) complexes efficiently catalyze ring-opening polymerization (ROP) of l-lactide under solvent-free melt conditions producing polylactide polymer of moderate to low molecular weights with narrow molecular weight distributions.  相似文献   

20.
α-Alkynyl-α-ethoxycarbonyl cyclopentanones 1a-c and cyclohexanones 2a-c were readily synthesized by the reaction of ethyl 2-oxocyclopentanonecarboxylate 6 and ethyl 2-oxocyclohexanonecarboxylate 7 with alkynyllead triacetates 5a-c obtained from lithium acetylides 4a-c and lead tetraacetate. Treatment of 1a-c and 2a-c with 1 N KOH in THF or with n-Bu4N+OEt in EtOH and THF gave the corresponding conjugated allenyl esters 8a-c, 9a-c, 10a-c, and 11a-c in good to excellent yields, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号