首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The termination step is an important source of structural diversity in polyketide biosynthesis. Most type I polyketide synthase (PKS) assembly lines are terminated by a thioesterase (TE) domain located at the C-terminus of the final module, while other PKS assembly lines lack a terminal TE domain and are instead terminated by a separate enzyme in trans. In cylindrocyclophane biosynthesis, the type I modular PKS assembly line is terminated by a freestanding type III PKS (CylI). Unexpectedly, the final module of the type I PKS (CylH) also possesses a C-terminal TE domain. Unlike typical type I PKSs, the CylH TE domain does not influence assembly line termination by CylI in vitro. Instead, this domain phylogenetically resembles a type II TE and possesses activity consistent with an editing function. This finding may shed light on the evolution of unusual PKS termination logic. In addition, the presence of related type II TE domains in many cryptic type I PKS and nonribosomal peptide synthetase (NRPS) assembly lines has implications for pathway annotation, product prediction, and engineering.  相似文献   

2.
During the search for polyketide synthase (PKS) in the genome of Streptomyces halstedii HC34, we found clustered new genes which appeared to encode typical Type 1 PKSs beyond the cluster harboring the genes for the biosynthesis of antitumor antibiotic vicenistatin. The deduced domain configuration of these putative PKS genes allowed to predict a corresponding partial structure of polyketide, which was in turn materialized by isolation of new polyketide macrolactone halstoctacosanolides A and B from the fermentation broth of S. halstedii HC34. The structures of these metabolites were determined by spectroscopic means to have a novel 28-membered macrolactone structure. The partial structure deduced from the genetic data was completely compatible to the structures of halstoctacosanolides A and B. This success clearly demonstrates the present new approach of genome-inspired search for new antibiotics promising. Halstoctacosanolides A and B showed moderate antimicrobial activity against several microorganisms.  相似文献   

3.
Engineering polyketide synthases (PKS) to produce new metabolites requires an understanding of catalytic points of failure during substrate processing. Growing evidence indicates the thioesterase (TE) domain as a significant bottleneck within engineered PKS systems. We created a series of hybrid PKS modules bearing exchanged TE domains from heterologous pathways and challenged them with both native and non‐native polyketide substrates. Reactions pairing wildtype PKS modules with non‐native substrates primarily resulted in poor conversions to anticipated macrolactones. Likewise, product formation with native substrates and hybrid PKS modules bearing non‐cognate TE domains was severely reduced. In contrast, non‐native substrates were converted by most hybrid modules containing a substrate compatible TE, directly implicating this domain as the major catalytic gatekeeper and highlighting its value as a target for protein engineering to improve analog production in PKS pathways.  相似文献   

4.
BACKGROUND: Polyketides are important compounds with antibiotic and anticancer activities. Several modular polyketide synthases (PKSs) contain a terminal thioesterase (TE) domain probably responsible for the release and concomitant cyclization of the fully processed polyketide chain. Because the TE domain influences qualitative aspects of product formation by engineered PKSs, its mechanism and specificity are of considerable interest. RESULTS: The TE domain of the 6-deoxyerythronolide B synthase was overexpressed in Escherichia coli. When tested against a set of N-acetyl cysteamine thioesters the TE domain did not act as a cyclase, but showed significant hydrolytic specificity towards substrates that mimic important features of its natural substrate. Also the overall rate of polyketide chain release was strongly enhanced by a covalent connection between the TE domain and the terminal PKS module (by as much as 100-fold compared with separate TE and PKS 'domains'). CONCLUSIONS: The inability of the TE domain alone to catalyze cyclization suggests that macrocycle formation results from the combined action of the TE domain and a PKS module. The chain-length and stereochemical preferences of the TE domain might be relevant in the design and engineered biosynthesis of certain novel polyketides. Our results also suggest that the TE domain might loop back to catalyze the release of polyketide chains from both terminal and pre-terminal modules, which may explain the ability of certain naturally occurring PKSs, such as the picromycin synthase, to generate both 12-membered and 14-membered macrolide antibiotics.  相似文献   

5.
Regiospecific cyclizations of the nascent poly-beta-ketone backbones dictate the structures of polyketide natural products. The fungal iterative megasynthases use terminal thioesterase/claisen cyclase (TE/CLC) domains to direct the fate of the polyketide chains. In this work, we present two strategies toward redirecting the cyclization steps of fungal PKSs using the Gibberella fujikuroi PKS4. First, inactivation or removal of the TE/CLC domain resulted in the synthesis of the new polyketide SMA93 2. Complementation of the mutant PKS4 with a standalone TE/CLC domain restored the regioselective cyclization steps of PKS4 and led to the synthesis of SMA76 1, demonstrating that cyclization enzymes can interact with the megasynthase in trans. This led to the second approach in which various dissociated, bacterial tailoring enzymes were added to the megasynthase in trans. Addition of the act KR led to the synthesis of mutactin 3, while the addition of first ring and second ring cyclases yielded anthraquinone compounds DMAC 5 and SEK26 6. The cooperative activities of fungal and bacterial PKS components are especially important and enable synthesis of polyketides utilizing enzymes from two distinct families of PKSs.  相似文献   

6.
Picromycin synthase (PICS) is a multifunctional, modular polyketide synthase (PKS) that catalyzes the conversion of methylmalonyl-CoA to narbonolide and 10-deoxymethynolide, the macrolide aglycone precursors of the antibiotics picromycin and methymycin, respectively. PICS modules 5 and 6 were each expressed in Escherichia coli with a thioesterase domain at the C-terminus to allow release of polyketide products. The substrate specificity of PICS modules 5+TE and 6+TE was investigated using N-acetylcysteamine thioesters of 2-methyl-3-hydroxy-pentanoic acid as diketide analogues of the natural polyketide chain elongation substrates. PICS module 5+TE could catalyze the chain elongation of only the syn diketide (2S,3R)-4, while PICS module 6+TE processed both syn diastereomers, (2S,3R)-4 and (2R,3S)-5, with a 2.5:1 preference in k(cat)/K(m) for 5 but did not turn over either of the two anti diketides. The observed substrate specificity patterns are in contrast to the 15-100:1 preference for 4 over 5 previously established for several modules of the closely related erythromycin PKS, 6-deoxyerythronolide B synthase (DEBS).  相似文献   

7.
Vicenistatin, an antitumor antibiotic isolated from Streptomyces halstedii, is a unique 20-membered macrocyclic lactam with a novel aminosugar vicenisamine. The vicenistatin biosynthetic gene cluster (vin) spanning approximately 64 kbp was cloned and sequenced. The cluster contains putative genes for the aglycon biosynthesis including four modular polyketide synthases (PKSs), glutamate mutase, acyl CoA-ligase, and AMP-ligase. Also found in the cluster are genes of NDP-hexose 4,6-dehydratase and aminotransferase for vicenisamine biosynthesis. For the functional confirmation of the cluster, a putative glycosyltransferase gene product, VinC, was heterologously expressed, and the vicenisamine transfer reaction to the aglycon was chemically proved. A unique feature of the vicenistatin PKS is that the loading module contains only an acyl carrier protein domain, in contrast to other known PKS-loading modules containing certain activation domains. Activation of the starter acyl group by separate polypeptides is postulated as well.  相似文献   

8.
BACKGROUND: Modular polyketide synthases (PKSs) produce a wide range of medically significant compounds. In the case of the pikromycin PKS of Streptomyces venezuelae, four separate polypeptides (PikAI-PikAIV), comprising a total of one loading domain and six extension modules, generate the 14-membered ring macrolactone narbonolide. The polypeptide PikAIV contains a thioesterase (TE) domain and is responsible for catalyzing both the last elongation step with methylmalonyl CoA, and subsequent release of the final polyketide chain elongation intermediate from the PKS. Under certain growth conditions this polypeptide is synthesized from an alternative translational start site, giving rise to an N-terminal truncated form of PikAIV, containing only half of the ketosynthase (KS(6)) domain. The truncated form of PikAIV is unable to catalyze the final elongation step, but is able to cleave a polyketide chain from the preceding module on PikAIII (ACP(5)), giving rise to the 12-membered ring product 10-deoxymethynolide. RESULTS: S. venezuelae mutants expressing hybrid PikAIV polypeptides containing acyl carrier protein (ACP) and malonyl CoA specific acyltransferase (AT) domains from the rapamycin PKS were unable to catalyze production of 12- or 14-membered ring macrolactone products. Plasmid-based expression of a hybrid PikAIV containing the native KS(6) and TE domains, however, restored production of both narbonolide and 10-deoxymethynolide in the S. venezuelae AX912 mutant that generates a TE-deleted form of PikAIV. Use of alternative KS domains or deletion of the KS(6) domain within the hybrid PikAIV resulted in loss of both products. Plasmid-based expression of a TE domain of PikAIV as a separate polypeptide in the AX912 mutant resulted in greater than 50% restoration of 10-deoxymethynolide, but not in mutants expressing a hybrid PikAIV bearing an unnatural AT domain. Mutants expressing hybrid PikAIV polypeptides containing the natural AT(6) domains and different ACP domains efficiently produced polyketide products, but with a significantly higher 10-deoxymethynolide/narbonolide ratio than observed with native PikAIV. CONCLUSIONS: Dimerization of KS(6) modules allows in vivo formation of a PKS heterodimer using PikAIV polypeptides containing different AT and ACP domains. In such heterodimers, the TE domain and the AT(6) domain responsible for formation of the narbonolide product are located on different polypeptide chains. The AT(6) domain of PikAIV plays an important role in facilitating TE-catalyzed chain termination (10-deoxymethynolide formation) at the proceeding module in PikAIII. The pikromycin PKS can tolerate the presence of multiple forms (active and inactive) of PikAIV, and decreased efficiency of elongation by PikAIV can result in increased levels of 10-deoxymethynolide. These results provide new insight into functional molecular interactions and interdomain recognition in modular PKSs.  相似文献   

9.
BACKGROUND: Modular polyketide synthases (PKSs) function as molecular assembly lines in which polyketide chains are assembled by successive addition of chain extension units. At the end of the assembly line, there is usually a covalently linked type I thioesterase domain (TE I), which is responsible for release of the completed acyl chain from its covalent link to the synthase. Additionally, some PKS clusters contain a second thioesterase gene (TE II) for which there is no established role. Disruption of the TE II genes from several PKS clusters has shown that the TE II plays an important role in maintaining normal levels of antibiotic production. It has been suggested that the TE II fulfils this role by removing aberrant intermediates that might otherwise block the PKS complex. RESULS: We show that recombinant tylosin TE II behaves in vitro as a TE towards a variety of N-acetylcysteamine and p-nitrophenyl esters. The trends of hydrolytic activity determined by the kinetic parameter k(cat)/K(M) for the analogues tested indicates that simple fatty acyl chains are effective substrates. Analogues that modelled aberrant forms of putative tylosin biosynthetic intermediates were hydrolysed at low rates. CONCLUSIONS: The behaviour of tylosin TE II in vitro is consistent with its proposed role as an editing enzyme. Aberrant decarboxylation of a malonate-derived moiety attached to an acyl carrier protein (ACP) domain may generate an acetate, propionate or butyrate residue on the ACP thiol. Our results suggest that removal of such groups is a significant role of TE II.  相似文献   

10.
Epothilone C is produced by the combined action of one nonribosomal peptide synthetase (NRPS) and nine polyketide synthase (PKS) modules in a multienzyme system. The final step in the biosynthesis is the thioesterase (TE)-catalyzed cyclorelease of epothilone from the EpoF protein. It has been unclear whether isolated PKS TE domains could exhibit macrolactonization activity. Here we demonstrate that the excised epothilone TE domain can catalyze the efficient cyclization of the N-acetylcysteamine thioester of seco-epothilone C to generate epothilone C (kcat/KM = 0.41 +/- 0.03 min-1 mM-1). The TE domain also catalyzes the hydrolysis of both the N-acetylcysteamine thioester of seco-epothilone C (kcat = 0.087 +/- 0.005 min-1, KM = 291 +/- 53 muM) and that of the epothilone C (kcat = 0.67 +/- 0.01 min-1, KM = 117 +/- 5 muM) to form seco-epothilone C.  相似文献   

11.
Background: Polyketides are structurally diverse natural products with a wide range of useful activities. Bacterial modular polyketide synthases (PKSs) catalyse the production of non-aromatic polyketides using a different set of enzymes for each successive cycle of chain extension. The choice of starter unit is governed by the substrate specificity of a distinct loading module. The unusual loading module of the soraphen modular PKS, from the myxobacterium Sorangium cellulosum, specifies a benzoic acid starter unit. Attempts to design functional hybrid PKSs using this loading module provide a stringent test of our understanding of PKS structure and function, since the order of the domains in the loading and first extension module is non-canonical in the soraphen PKS, and the producing strain is not an actinomycete.Results: We have constructed bimodular PKSs based on DEBS1-TE, a derivative of the erythromycin PKS that contains only extension modules 1 and 2 and a thioesterase (TE) domain, by substituting one or more domains from the soraphen PKS. A hybrid PKS containing the soraphen acyltransferase domain AT1b instead of extension acyltransferase domain AT1 produced triketide lactones lacking a methyl group at C-4, as expected if AT1b catalyses the addition of malonyl-CoA during the first extension cycle on the soraphen PKS. Substitution of the DEBS1-TE loading module AT domain by the soraphen AT1a domain led to the production of 5-phenyl-substituted triketide lactone, as well as the normal products of DEBS1-TE. This 5-phenyl triketide lactone was also the product of a hybrid PKS containing the entire soraphen PKS loading module as well as part of its first extension module. Phenyl-substituted lactone was only produced when measures were simultaneously taken to increase the intracellular supply of benzoyl-CoA in the host strain of Saccharopolyspora erythraea.Conclusions: These results demonstrate that the ability to recruit a benzoate starter unit can be conferred on a modular PKS by the transfer either of a single AT domain, or of multiple domains to produce a chimaeric first extension module, from the soraphen PKS. However, benzoyl-CoA needs to be provided within the cell as a specific precursor. The data also support the respective roles previously assigned to the adjacent AT domains of the soraphen loading/first extension module. Construction of such hybrid actinomycete–myxobacterial enzymes should significantly extend the synthetic repertoire of modular PKSs.  相似文献   

12.
Yi Tang 《Tetrahedron》2004,60(35):7659-7671
Polycyclic aromatic polyketides such as actinorhodin and tetracenomycin are synthesized from acetate equivalents by type II polyketide synthases (PKS). Their carbon chain backbones are derived from malonyl-CoA building blocks through the action of a minimal PKS module consisting of a ketosynthase, a chain length factor, an acyl carrier protein (ACP) and a malonyl-CoA/ACP transacylase. In contrast to these acetogenic polyketides, the backbones of a few aromatic polyketide natural products, such as the R1128 antibiotics, are primed by non-acetate building blocks. These polyketides are synthesized by bimodular PKSs comprising of a dedicated initiation module, which includes a ketosynthase, acyl transferase and ACP, as well as a minimal PKS module. Recently we showed that regioselectively modified polyketides could be synthesized through the genetic recombination of initiation modules and minimal PKS modules from different polyketide biosynthetic pathways (Tang et al. PLoS Biol. 2004, 2, 227-238). For example, the actinorhodin and tetracenomycin minimal PKSs could accept and elongate unnatural primer units from the R1128 initiation module. In this report we provide further examples of using heterologous bimodular PKSs for the engineered biosynthesis of new aromatic polyketides. In addition to providing insights into the biosynthetic mechanisms of aromatic PKSs, our findings also highlight considerable potential for crosstalk between amino acid catabolism and aromatic polyketide biosynthesis. For example, exogenously supplied unnatural amino acids are efficiently incorporated into bioactive anthraquinone antibiotics.  相似文献   

13.
Detailed analysis of the modular Type I polyketide synthase (PKS) involved in the biosynthesis of the marginolactone azalomycin F in mangrove Streptomyces sp. 211726 has shown that only nineteen extension modules are required to accomplish twenty cycles of polyketide chain elongation. Analysis of the products of a PKS mutant specifically inactivated in the dehydratase domain of extension‐module 1 showed that this module catalyzes two successive elongations with different outcomes. Strikingly, the enoylreductase domain of this module can apparently be “toggled” off and on : it functions in only the second of these two cycles. This novel mechanism expands our understanding of PKS assembly‐line catalysis and may explain examples of apparent non‐colinearity in other modular PKS systems.  相似文献   

14.
Detailed analysis of the modular Type I polyketide synthase (PKS) involved in the biosynthesis of the marginolactone azalomycin F in mangrove Streptomyces sp. 211726 has shown that only nineteen extension modules are required to accomplish twenty cycles of polyketide chain elongation. Analysis of the products of a PKS mutant specifically inactivated in the dehydratase domain of extension-module 1 showed that this module catalyzes two successive elongations with different outcomes. Strikingly, the enoylreductase domain of this module can apparently be “toggled” off and on : it functions in only the second of these two cycles. This novel mechanism expands our understanding of PKS assembly-line catalysis and may explain examples of apparent non-colinearity in other modular PKS systems.  相似文献   

15.
BACKGROUND: Based on the homology with fatty acid synthases and bacterial polyketide synthases (PKSs), thioesterase domains have been assigned at the C-terminus regions of fungal iterative type I PKSs. We previously overexpressed Aspergillus nidulans wA PKS gene in a heterologous fungal host and identified it to encode a heptaketide naphthopyrone synthase. In addition, expression of C-terminus-modified WA PKS gave heptaketide isocoumarins suggesting that the C-terminus region of WA PKS is involved in the cyclization of the second aromatic ring of naphthopyrone. To unravel the actual function of the C-terminus region, we carried out functional analysis of WA PKS mutants by C-terminus deletion and site-directed mutagenesis. RESULTS: Only the 32 amino acid deletion from the C-terminus of WA PKS caused product change to heptaketide isocoumarins from heptaketide naphthopyrone, YWA1 1, a product of intact WA PKS. Further C-terminus deletion mutant of WA PKS up to Ser(1967), an active site residue of so far called thioesterase, still produced isocoumarins. Site-directed mutagenesis of amino acid residues in this C-terminus region showed that even a single mutation of S1967A or H2129Q caused production of isocoumarin instead of naphthopyrone. Furthermore, the role of tandem acyl carrier proteins (ACPs), a typical feature of fungal aromatic PKSs, was examined by site-directed mutagenesis and the results indicated that both ACPs can function as ACP independently. CONCLUSIONS: Claisen-type cyclization is assumed to be involved in formation of aromatic compounds by some fungal type I PKSs. These PKSs have a quite identical architecture of active site domain organization, beta-ketoacyl synthase, acyltransferase, tandem ACPs and thioesterase (TE) domains. Since the C-terminus region of WA PKS of this type was determined to be involved in Claisen-type cyclization of the second ring of naphthopyrone, we propose that the so far called TE of these PKSs work not just as TE but as Claisen cyclase.  相似文献   

16.
《Chemistry & biology》1997,4(10):757-766
Background: Modular polyketide synthases (PKSs) are large multifunctional proteins that catalyze the biosynthesis of structurally complex bioactive products. The modular organization of PKSs has allowed the application of a combinatorial approach to the synthesis of novel polyketides via the manipulation of these biocatalysts at the genetic level. The inherent specificity of PKSs for their natural substrates, however, may place limits on the spectrum of molecular diversity that can be achieved in polyketide products. With the aim of further understanding PKS specificity, as a route to exploiting PKSs in combinatorial synthesis, we chose to examine the substrate specificity of a single intact domain within a bimodular PKS to investigate its capacity to utilize unnatural substrates.Results: We used a blocked mutant of a bimodular PKS in which formation of the triketide product could occur only via uptake and processing of a synthetic diketide intermediate. By introducing systematic changes in the native diketide structure, by means of the synthesis of unnatural diketide analogs, we have shown that the ketosynthase domain of module 2 (KS2 domain) in 6-deoxyerythronolide B synthase (DEBS) tolerates a broad range of variations in substrate structure, but it strongly discriminates against some others.Conclusions: Defining the boundaries of substrate recognition within PKS domains is crucial to the rationally engineered biosynthesis of novel polyketide products, many of which could be prepared only with great difficulty, if at all, by direct chemical synthesis or semi-synthesis. Our results suggest that the KS2 domain of DEBS1 has a relatively relaxed specificity that can be exploited for the design and synthesis of medicinally important polyketide products.  相似文献   

17.
《Chemistry & biology》1997,4(6):433-443
Background: Iterative type II polyketide synthases (PKSs) produce polyketide chains of variable but defined length from a specific starter unit and a number of extender units. They also specify the initial regiospecific folding and cyclization pattern of nascent polyketides either through the action of a cyclase (CYC) subunit or through the combined action of site-specific ketoreductase (KR) CYC CYC subunits. Additional CYCs and other modifications may be necessary to produce linear aromatic polyketides. The principles of the assembly of the linear aromatic polyketides, several of which are medically important, are well understood, but it is not clear whether the assembly of the angular aromatic (angucyclic) polyketides follows the same rules.Results: We performed an in vivo evaluation of the subunits of the PKS responsible for the production of the angucyclic polyketide jadomycin (jad), in comparison with their counterparts from the daunorubicin (dps) and tetracenomycin (tcm) PKSs which produce linear aromatic polyketides. No matter which minimal PKS was used to produce the initial polyketide chain, the JadD and DpsF CYCs produced the same two polyketides, in the same ratio; neither product was angularly fused. The set of jadABCED PKS plus putative jadl CYC genes behaved similarly. Furthermore, no angular polyketides were isolated when the entire set of jad PKS enzymes and Jadl or the jad minimal PKS, Jadl and the TcmN CYC were present. The DpsE KR was able to reduce decaketides but not octaketides; in contrast, the KRs from the jad PKS (JadE) or the actinorhodin PKS (ActIII) could reduce octaketide chains, giving three distinct products.Conclusions: It appears that the biosynthesis of angucyclic polyketides cannot be simply accomplished by expressing the known PKS subunits from artificial gene cassettes under the control of a non-native promoter. The characteristic structure of the angucycline ring system may arise from a kinked precursor during later cyclization reactions involving additional, but so far unknown, components of the extended decaketide PKS. Our results also suggest that some KRs have a minimal chain length requirement and that CYC enzymes may act aberrantly as first-ring aromatases that are unable to perform all of the sequential cyclization steps. Both of these characteristics may limit the widespread application of CYC or KR enzymes in the synthesis of novel polyketides.  相似文献   

18.
Orsellinic acid (OA) derivatives are produced by filamentous fungi using nonreducing polyketide synthases (nrPKSs). The chain-releasing thioesterase (TE) domains of such nrPKSs were proposed to also catalyze dimerization to yield didepsides, such as lecanoric acid. Here, we use combinatorial domain exchanges, domain dissections and reconstitutions to reveal that the TE domain of the lecanoric acid synthase Preu6 of Preussia isomera must collaborate with the starter acyl transferase (SAT) domain from the same nrPKS. We show that artificial SAT-TE fusion proteins are highly effective catalysts and reprogram the ketide homologation chassis to form didepsides. We also demonstrate that dissected SAT and TE domains of Preu6 physically interact, and SAT and TE domains of OA-synthesizing nrPKSs may co-evolve. Our work highlights an unexpected domain–domain interaction in nrPKSs that must be considered for the combinatorial biosynthesis of unnatural didepsides, depsidones, and diphenyl ethers.  相似文献   

19.
Picromycin/methymycin synthase (PICS) is a modular polyketide synthase (PKS) that is responsible for the biosynthesis of both 10-deoxymethynolide (1) and narbonolide (2), the parent 12- and 14-membered aglycone precursors of the macrolide antibiotics methymycin and picromycin, respectively. PICS module 2 is a dehydratase (DH)-containing module that catalyzes the formation of the unsaturated triketide intermediate using malonyl-CoA as the chain extension substrate. Recombinant PICS module 2+TE, with the PICS thioesterase domain appended to the C-terminus to allow release of polyketide products, was expressed in Escherichia coli. Purified PICS module 2+TE converted malonyl-CoA and 4, the N-acetylcysteamine thioester of (2S,3R)-2-methyl-3-hydroxypentanoic acid, to a 1:2 mixture of the triketide acid (4S,5R)-4-methyl-5-hydroxy-2-heptenoic acid (5) and (3S,4S,5R)-3,5-dihydroxy-4-methyl-n-heptanoic acid-delta-lactone (10) with a combined kcat of 0.6 min(-1). The triketide lactone 10 is formed by thioesterase-catalyzed cyclization of the corresponding d-3-hydroxyacyl-SACP intermediate, a reaction which competes with dehydration catalyzed by the dehydratase domain. PICS module 2+TE showed a strong preference for the syn-diketide-SNAC 4, with a 20-fold greater kcat/K(m) than the anti-(2S,3S)-diketide-SNAC 14, and a 40-fold advantage over the syn-(2R,3S)-diketide-SNAC 13. PICS module 2(DH(0))+TE, with an inactivated DH domain, produced exclusively 10, while three PICS module 2(KR(0))+TE mutants, with inactivated KR domains, produced exclusively or predominantly the unreduced triketide ketolactone, (4S,5R)-3-oxo-4-methyl-5-hydroxy-n-heptanoic acid-delta-lactone (7). These studies establish for the first time the structure and stereochemistry of the intermediates of a polyketide chain elongation cycle catalyzed by a DH-containing module, while confirming the importance of key active site residues in both KR and DH domains.  相似文献   

20.
The biosynthesis of polyketides by type I modular polyketide synthases (PKS) relies on co-ordinated interactions between acyl carrier protein (ACP) domains and catalytic domains within the megasynthase. Despite the importance of these interactions, and their implications for biosynthetic engineering efforts, they remain poorly understood. Here, we report the molecular details of the interaction interface between an ACP domain and a ketoreductase (KR) domain from a trans-acyltransferase (trans-AT) PKS. Using a high-throughput mass spectrometry (MS)-based assay in combination with scanning alanine mutagenesis, residues contributing to the KR-binding epitope of the ACP domain were identified. Application of carbene footprinting revealed the ACP-binding site on the KR domain surface, and molecular docking simulations driven by experimental data allowed production of an accurate model of the complex. Interactions between ACP and KR domains from trans-AT PKSs were found to be specific for their cognate partner, indicating highly optimised interaction interfaces driven by evolutionary processes. Using detailed knowledge of the ACP:KR interaction epitope, an ACP domain was engineered to interact with a non-cognate KR domain partner. The results provide novel, high resolution insights into the ACP:KR interface and offer valuable rules for future engineering efforts of biosynthetic assembly lines.

The interaction epitope between a cognate KR–ACP domain pairing from a trans-AT polyketide synthase is elucidated in molecular detail, providing unique insights into recognition and specificity of the interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号