首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The effects on hearing and the sensory cell population of four continuous, non-Gaussian noise exposures each having an A-weighted L(eq)=100 dB SPL were compared to the effects of an energy-equivalent Gaussian noise. The non-Gaussian noise conditions were characterized by the statistical metric, kurtosis (beta), computed on the unfiltered, beta(t), and the filtered, beta(f), time-domain signals. The chinchilla (n=58) was used as the animal model. Hearing thresholds were estimated using auditory-evoked potentials (AEP) recorded from the inferior colliculus and sensory cell populations were obtained from surface preparation histology. Despite equivalent exposure energies, the four non-Gaussian conditions produced considerably greater hearing and sensory cell loss than did the Gaussian condition. The magnitude of this excess trauma produced by the non-Gaussian noise was dependent on the frequency content, but not on the average energy content of the impacts which gave the noise its non-Gaussian character. These results indicate that beta(t) is an appropriate index of the increased hazard of exposure to non-Gaussian noises and that beta(f) may be useful in the prediction of the place-specific additional outer hair cell loss produced by non-Gaussian exposures. The results also suggest that energy-based metrics, while necessary for the prediction of noise-induced hearing loss, are not sufficient.  相似文献   

2.
Current noise guidelines use an energy-based noise metric to predict the risk of hearing loss, and thus ignore the effect of temporal characteristics of the noise. The practice is widely considered to underestimate the risk of a complex noise environment, where impulsive noises are embedded in a steady-state noise. A basic form for noise metrics is designed by combining the equivalent sound pressure level (SPL) and a temporal correction term defined as a function of kurtosis of the noise. Several noise metrics are developed by varying this basic form and evaluated utilizing existing chinchilla noise exposure data. It is shown that the kurtosis correction term significantly improves the correlation of the noise metric with the measured hearing losses in chinchillas. The average SPL of the frequency components of the noise that define the hearing loss with a kurtosis correction term is identified as the best noise metric among tested. One of the investigated metrics, the kurtosis-corrected A-weighted SPL, is applied to a human exposure study data as a preview of applying the metrics to human guidelines. The possibility of applying the noise metrics to human guidelines is discussed.  相似文献   

3.
Sixteen groups of chinchillas (N=140) were exposed to various equivalent energy noise paradigms at 100 dB(A) or 103 dB(A) SPL. Eleven groups received an interrupted, intermittent, and time varying (IITV) non-Gaussian exposure quantified by the kurtosis statistic. The IITV exposures, which lasted for 8 hday, 5 daysweek for 3 weeks, were designed to model some of the essential features of an industrial workweek. Five equivalent energy reference groups were exposed to either a Gaussian or non-Gaussian 5 days, 24 hday continuous noise. Evoked potentials were used to estimate hearing thresholds and surface preparations of the organ of Corti quantified the sensory cell population. For IITV exposures at an equivalent energy and kurtosis, the temporal variations in level did not alter trauma and in some cases the IITV exposures produced results similar to those found for the 5 day continuous exposures. Any increase in kurtosis at a fixed energy was accompanied by an increase in noise-induced trauma. These results suggest that the equal energy hypothesis is an acceptable approach to evaluating noise exposures for hearing conservation purposes provided that the kurtosis of the amplitude distribution is taken into consideration. Temporal variations in noise levels seem to have little effect on trauma.  相似文献   

4.
Data from an earlier study [Hamernik et al. (2003). J. Acoust. Soc. Am. 114, 386-395] were consistent in showing that, for equivalent energy [Leq= 100 dB(A)] and spectra, exposure to a continuous, nonGaussian (nonG) noise could produce substantially greater hearing and sensory cell loss in the chinchilla model than a Gaussian (G) noise exposure and that the statistical metric, kurtosis, computed on the amplitude distribution of the noise could order the extent of the trauma. This paper extends these results to Leq= 90 and 110 dB(A), and to nonG noises that are generated using broadband noise bursts, and band limited impacts within a continuous G background noise. Data from nine new experimental groups with 11 or 12 chinchillas/group is presented. Evoked response audiometry established hearing thresholds and surface preparation histology quantified sensory cell loss. At the lowest level [Leq=90 dB(A)] there were no differences in the trauma produced by G and nonG exposures. For Leq >90 dB(A) nonG exposures produced increased trauma relative to equivalent G exposures. Removing energy from the impacts by limiting their bandwidth reduced trauma. The use of noise bursts to produce the nonG noise instead of impacts also reduced the amount of trauma.  相似文献   

5.
An interrupted noise exposure of sufficient intensity, presented on a daily repeating cycle, produces a threshold shift (TS) following the first day of exposure. TSs measured on subsequent days of the exposure sequence have been shown to decrease relative to the initial TS. This reduction of TS, despite the continuing daily exposure regime, has been called a cochlear toughening effect and the exposures referred to as toughening exposures. Four groups of chinchillas were exposed to one of four different noises presented on an interrupted (6 h/day for 20 days) or noninterrupted (24 h/day for 5 days) schedule. The exposures had equivalent total energy, an overall level of 100 dB(A) SPL, and approximately the same flat, broadband long-term spectrum. The noises differed primarily in their temporal structures; two were Gaussian and two were non-Gausssian, nonstationary. Brainstem auditory evoked potentials were used to estimate hearing thresholds and surface preparation histology was used to determine sensory cell loss. The experimental results presented here show that: (1) Exposures to interrupted high-level, non-Gaussian signals produce a toughening effect comparable to that produced by an equivalent interrupted Gaussian noise. (2) Toughening, whether produced by Gaussian or non-Gaussian noise, results in reduced trauma compared to the equivalent uninterrupted noise, and (3) that both continuous and interrupted non-Gaussian exposures produce more trauma than do energy and spectrally equivalent Gaussian noises. Over the course of the 20-day exposure, the pattern of TS following each day's exposure could exhibit a variety of configurations. These results do not support the equal energy hypothesis as a unifying principal for estimating the potential of a noise exposure to produce hearing loss.  相似文献   

6.
Eight groups of chinchillas (N=74) were exposed to various equivalent energy [100 or 106 dB(A) sound pressure level (SPL)] noise exposure paradigms. Six groups received an interrupted, intermittent, time varying (IITV) Gaussian noise exposure that lasted 8 h/d, 5 d/week for 3 weeks. The exposures modeled an idealized workweek. At each level, three different temporal patterns of Gaussian IITV noise were used. The 100 dB(A) IITV exposure had a dB range of 90-108 dB SPL while the range of the 106 dB(A) IITV exposure was 80-115 dB SPL. Two reference groups were exposed to a uniform 100 or 106 dB(A) SPL noise, 24 h/d for 5 days. Each reference group and the three corresponding IITV groups comprised a set of equivalent energy exposures. Evoked potentials were used to estimate hearing thresholds and surface preparation histology quantified sensory cell populations. All six groups exposed to the IITV noise showed threshold toughening effects of up to 40 dB. All IITV exposures produced hearing and sensory cell loss that was similar to their respective equivalent energy reference group. These results indicate that for Gaussian noise the equal energy hypothesis for noise-induced hearing loss is an acceptable unifying principle.  相似文献   

7.
The applicability of the equal energy hypothesis (EEH) to impact noise exposures was studied using chinchillas. Hearing thresholds were estimated by recording the evoked potentials from a chronic electrode implanted in the inferior colliculus. The animals were exposed to broadband impacts of 200-ms duration. The study was carried out in two parts. In experiment I, six exposure levels (107, 113, 119, 125, 131, and 137 dB SPL) and three repetition rates (4/s, 1/s and 1/4s) were employed. In the second experiment, the total duration of the exposure as well as the total energy were kept constant by trading level and rate. Results indicate that hearing loss resulting from exposure to impact noise does not conform to the predictions of the EEH. The permanent threshold shift as well as the hair cell loss are more or less equal across the lower peak exposure levels. However, both the hearing loss and the hair cell damage increase for exposures with higher peak levels. Furthermore, hearing loss and cochlear damage are dependent upon the rate of exposure. Thus the amount of hearing loss and hair cell damage appears to depend on the interaction of several factors including peak level, rate, and the susceptibility of the animal.  相似文献   

8.
Behavioral studies of hearing loss produced by exposure to ototraumatic agents in experimental animals, combined with the anatomical evaluation of end-organ pathology, have provided useful information about the relation between dysfunction and pathology. However, in order to attribute a given hearing loss to some pattern of cochlear damage, it is necessary to test each ear independently. The objective of the present study was to evaluate attenuation measured behaviorally and protection to the cochlea provided by removal of the malleus and incus in noise-exposed chinchillas. Results from one behaviorally trained chinchilla with ossicular removal indicated a conductive hearing loss that varied from 41 dB at 0.125 kHz to 81 dB at 4.8 kHz and averaged 60 dB. Counts of missing sensory cells in ears of seven chinchillas with unilateral ossicular removal and exposure to noise (octave band centered at 0.5 kHz, 95 dB SPL, for durations up to 216 days, or centered at 4.0 kHz, 108 dB SPL, for 1.75 h) showed no more cell loss on the protected side than in age-matched control ears. From these data it is concluded that ossicular removal provides enough attenuation to protect the chinchilla cochlea from damage during these noise exposures, and that it will insure monaural responses behaviorally as long as the hearing loss in the test ear does not exceed that in the ear with ossicular removal by approximately 50 dB at any frequency.  相似文献   

9.
Impulse noise: critical review   总被引:4,自引:0,他引:4  
A review of the last 10 years of research on impulse noise reveals certain insights and perspectives on the biological and audiological effects of exposures to impulse noise. First, impulse noise may damage the cochlea by direct mechanical processes. Second, after exposure to impulse noise, hearing may recover in an erratic, nonmonotonic pattern. Third, even though the existing damage-risk criteria evaluate impulse noise in terms of level, duration, and number, often parameters such as temporal pattern, waveform, and rise time are also important in the production of a hearing loss. Fourth, the effects of impulse noise are often inconsistent with the principle of the equal energy hypothesis. Fifth, impulse noise can interact with background continuous noise to produce greater hearing loss than would have been predicted by the simple sum of the individual noises.  相似文献   

10.
Rabbits were exposed to 2- to 7-kHz noise either for a short duration at a high sound-pressure level (15 or 30 min at 115 dB SPL), or a long duration at a low level (512 h at 85 dB SPL). The high-level exposure produced a hearing loss in the frequency range 2-6 kHz, whereas the low-level exposure gave maximum hearing loss at 12-20 kHz. The 115-dB exposure caused significantly more damage to inner hair cells than the 85-dB exposure. The implications of the present results for evaluating audiograms, equal-energy hypothesis, risk criteria, and subjective auditory features are pointed out.  相似文献   

11.
Internal noise generated by hearing-aid circuits can be audible and objectionable to aid users, and may lead to the rejection of hearing aids. Two expansion algorithms were developed to suppress internal noise below a threshold level. The multiple-channel algorithm's expansion thresholds followed the 55-dB SPL long-term average speech spectrum, while the single-channel algorithm suppressed sounds below 45 dBA. With the recommended settings in static conditions, the single-channel algorithm provided lower noise levels, which were perceived as quieter by most normal-hearing participants. However, in dynamic conditions "pumping" noises were more noticeable with the single-channel algorithm. For impaired-hearing listeners fitted with the ADRO amplification strategy, both algorithms maintained speech understanding for words in sentences presented at 55 dB SPL in quiet (99.3% correct). Mean sentence reception thresholds in quiet were 39.4, 40.7, and 41.8 dB SPL without noise suppression, and with the single- and multiple-channel algorithms, respectively. The increase in the sentence reception threshold was statistically significant for the multiple-channel algorithm, but not the single-channel algorithm. Thus, both algorithms suppressed noise without affecting the intelligibility of speech presented at 55 dB SPL, with the single-channel algorithm providing marginally greater noise suppression in static conditions, and the multiple-channel algorithm avoiding pumping noises.  相似文献   

12.
It is well known that excessive exposure to noise results in temporary and/or permanent changes in hearing sensitivity in both human and animal subjects. The purpose of this review is to describe the major findings from laboratory studies of experimentally induced hearing losses, both temporary and permanent, resulting from exposure to noise in animal subjects which have been published since the report of Kryter et al. (1966). The data reviewed support the following general statements: (1) The chinchilla is the most widely used and most appropriate animal model for studies of noise-induced hearing loss; (2) with continuous exposures to moderate-level noise, thresholds reach asymptotic levels (ATS) within 18-24 h; (3) permanent threshold shifts, however, depend upon the level, frequency, and the duration of exposure; (4) below a "critical level" of about 115 dB, permanent threshold shift (PTS) and cell loss are generally related to the total energy in continuous exposures; (5) periodic rest periods inserted in an exposure schedule are protective and result in less hearing loss and cochlear damage than equal energy continuous exposures; and (6) under some schedules of periodic exposure, threshold shifts increase over the first few days of exposure, then recover as much as 30 dB as the exposure continues.  相似文献   

13.
Sound conditioning (pre-exposure to a moderate-level acoustic stimulus) can induce resistance to hearing loss from a subsequent traumatic exposure. Most sound conditioning experiments have utilized long-duration tones and noise at levels below 110 dB SPL as traumatic stimuli. It is important to know if sound conditioning can also provide protection from brief, high-level stimuli such as impulses produced by gunfire, and whether there are differences between females and males in the response of the ear to noise. In the present study, chinchillas were exposed to 95 dB SPL octave band noise centered at 0.5 kHz for 6 h/day for 5 days. After 5 days of recovery, they were exposed to simulated M16 rifle fire at a level of 150 dB peak SPL. Animals that were sound conditioned showed less hearing loss and smaller hair cell lesions than controls. Females showed significantly less hearing loss than males at low frequencies, but more hearing loss at 16 kHz. Cochleograms showed slightly less hair cell loss in females than in males. The results show that significant protection from impulse noise can be achieved with a 5-day conditioning regimen, and that there are consistent differences between female and male chinchillas in the response of the cochlea to impulse noise.  相似文献   

14.
The threatened resident beluga population of the St. Lawrence Estuary shares the Saguenay-St. Lawrence Marine Park with significant anthropogenic noise sources, including marine commercial traffic and a well-established, vessel-based whale-watching industry. Frequency-dependent (FD) weighting was used to approximate beluga hearing sensitivity to determine how noise exposure varied in time and space at six sites of high beluga summer residency. The relative contribution of each source to acoustic habitat degradation was estimated by measuring noise levels throughout the summer and noise signatures of typical vessel classes with respect to traffic volume and sound propagation characteristics. Rigid-hulled inflatable boats were the dominant noise source with respect to estimated beluga hearing sensitivity in the studied habitats due to their high occurrence and proximity, high correlation with site-specific FD-weighted sound levels, and the dominance of mid-frequencies (0.3-23 kHz) in their noise signatures. Median C-weighted sound pressure level (SPL(RMS)) had a range of 19 dB re 1 μPa between the noisiest and quietest sites. Broadband SPL(RMS) exceeded 120 dB re 1 μPa 8-32% of the time depending on the site. Impacts of these noise levels on St. Lawrence beluga will depend on exposure recurrence and individual responsiveness.  相似文献   

15.
The aim of this study was to examine susceptibility to noise-induced hearing loss in animals with and without age-related hearing loss (AHL), using cubic distortion product otoacoustic emissions (CDPs) to assess the functional status of the outer hair cell (OHC) system. Subjects were young (< or = 3-yr-old) and aged (10- to 15-yr-old) chinchillas. CDP thresholds and input/output (I/O) functions were measured before and after exposure to 95 dB or 106 dB SPL low-frequency noise. The results indicate that (a) aging in the chinchilla is associated with significant elevations of CDP thresholds and depression of CDP I/O functions, (b) noise exposures cause equivalent CDP threshold elevations and amplitude reductions in young animals with normal hearing and older animals with AHL, and (c) CDP threshold and amplitude measures provide information that complements evoked potentials measured from the auditory midbrain.  相似文献   

16.
Changes in hearing sensitivity and cochlear damage were determined in two groups of chinchillas exposed to an octave band of noise (OBN) centered at 0.5 kHz, 95 dB SPL on two different schedules: 6 h per day for 36 days, or 15 min/h for 144 days. Hearing sensitivity was measured behaviorally at 1/4-oct frequency intervals from 0.125 to 16.0 kHz before, during, and for a period of 1 to 2 months after the exposure, at which time the animals' cochleas were fixed and prepared for microscopic examination. Cochlear damage was determined by counts of missing sensory cells. Both exposures produced an initial shift of thresholds of 35-45 dB; however, after a few days of exposure, thresholds began to decline and eventually recovered to within 10-15 dB of original baseline values even though the exposure continued. Measures of recovery made after completion of the exposures indicated minimal permanent threshold shifts in all animals. The behavioral and anatomical data indicated that these intermittent exposures produced less temporary and permanent hearing loss and less cochlear damage than continuous exposures of equal energy.  相似文献   

17.
18.
The overshoot effect can be reduced by temporary hearing loss induced by aspirin or exposure to intense sound. The present study simulated a hearing loss at 4.0 kHz via pure-tone forward masking and examined the effect of the simulation on threshold for a 10-ms, 4.0-kHz signal presented 1 ms after the onset of a 400-ms, broadband noise masker whose spectrum level was 20 dB SPL. Masker frequency was 3.6, 4.0, or 4.2 kHz, and masker level was 80 dB SPL. Subject-dependent delays were determined such that 10 or 20 dB of masking at 4.0 kHz was produced. In general, the pure-tone forward masker did not reduce the simultaneous-masked threshold, suggesting that elevating threshold with a pure-tone forward masker does not sufficiently simulate the effect of a temporary hearing loss on overshoot.  相似文献   

19.
20.
This study examined the effects of mild-to-moderate sensorineural hearing loss on vowel perception abilities of young, hearing-impaired (YHI) adults. Stimuli were presented at a low conversational level with a flat frequency response (approximately 60 dB SPL), and in two gain conditions: (a) high level gain with a flat frequency response (95 dB SPL), and (b) frequency-specific gain shaped according to each listener's hearing loss (designed to simulate the frequency response provided by a linear hearing aid to an input signal of 60 dB SPL). Listeners discriminated changes in the vowels /I e E inverted-v ae/ when F1 or F2 varied, and later categorized the vowels. YHI listeners performed better in the two gain conditions than in the conversational level condition. Performances in the two gain conditions were similar, suggesting that upward spread of masking was not seen at these signal levels for these tasks. Results were compared with those from a group of elderly, hearing-impaired (EHI) listeners, reported in Coughlin, Kewley-Port, and Humes [J. Acoust. Soc. Am. 104, 3597-3607 (1998)]. Comparisons revealed no significant differences between the EHI and YHI groups, suggesting that hearing impairment, not age, is the primary contributor to decreased vowel perception in these listeners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号