首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lei H  Ellis BD  Ni C  Grandjean F  Long GJ  Power PP 《Inorganic chemistry》2008,47(22):10205-10207
The half-sandwich cobalt(I) complex (eta (6)-C 7H 8)CoAr*-3,5- ( i )Pr 2 (Ar*-3,5- ( i )Pr 2 = -C 6H-2,6-(C 6H 2-2,4,6- ( i )Pr 3) 2-3,5- ( i )Pr 2) was synthesized by reduction of [3,5- ( i )Pr 2Ar*Co(mu-Cl)] 2 in toluene. It reacts with CO or NO to afford the unusual complexes [3,5- ( i )Pr 2Ar*C(O)Co(CO)] or [3,5- ( i )Pr 2Ar*N(NO)OCo(NO) 2].  相似文献   

2.
A comparative study of the reactivity of isolobal rhenium and molybdenum carbonylmetallates containing a borole, in [Re(eta5-C4H4BPh)(CO)3]- (2), a boratanaphthalene, in [Mo(eta5-2,4-MeC9H6BMe)(CO)3]- (4a) and [Mo(eta5-2,4-MeC9H6BNi-Pr2)(CO)3]- (4b), a boratabenzene, in [Mo(eta5-3,5-Me2C5H3BNi-Pr2)(CO)3]- (6) or a dimethylaminocyclopentadienyl ligand, in [Mo(eta5-C5H4NMe2)(CO)3]- (7), toward palladium(II), gold(I), mercury(II) and platinum(II) complexes has allowed an evaluation of the role of these pi-bonded ligands on the structures and unprecedented coordination modes observed in the resulting metal-metal bonded, heterometallic complexes. The new metallate 6 was reacted with [AuCl(PPh3)], and with 1 or 2 equiv. HgCl2, which afforded the new heterodinuclear complexes [Au{Mo(eta5-3,5-Me2C5H3BNi-Pr2)(CO)3}(PPh3)] (Mo-Au) (10) and [Hg{Mo(eta5-3,5-Me2C5H3BNi-Pr2)(CO)3}Cl] (Hg-Mo) (11) and the heterometallic chain complex [Hg{Mo(eta5-3,5-Me2C5H3BNi-Pr2)(CO)3}2] (Mo-Hg-Mo) (12), respectively. Reactions of the new metallate 7 with HgCl2, trans-[PtCl2(CNt-Bu)2] and trans-[PtCl2(NCPh)2] yielded the heterodinuclear complex [Hg{Mo(eta5-C5H4NMe2)(CO)3}Cl] (Mo-Hg) (15), the heterotrinuclear chain complexes trans-[Pt{Mo(eta5-C5H4NMe2)(CO)3}2(CNt-Bu)2] (Mo-Pt-Mo) (16) and trans-[Pt{Mo(eta5-C5H4NMe2)(CO)3}2(NCPh)2] (Mo-Pt-Mo) (17), the mononuclear complex [Mo(eta5-C5H4NMe2)(CO)3Cl] (18), the lozenge-type cluster [Mo2Pt2(eta5-C5H4NMe2)2(CO)8] (19) and the heterodinuclear complex [[upper bond 1 start]Pt{Mo(eta5-C5H4N[upper bond 1 end]Me2)(CO)3}(NCPh)Cl](Mo-Pt) (20), respectively. The complexes 11, 16, 17.2THF, 18 and 20 have been structurally characterized by X-ray diffraction and 20 differs from all other compounds in that the dimethylaminocyclopentadienyl ligand forms a bridge between the metals.  相似文献   

3.
Addition of o-C 6H 4NCHNAr to Rh(coe) 2(acac) (coe = cis-cyclooctene, acac = acetylacetonato) gave several new iminopyridine rhodium(I) complexes of the type Rh(acac)(kappa (2)- o-C 6H 4 NCH NAr) ( 1a Ar = 4-C 6H 4-OMe; 1b Ar = 2,6-C 6H 3-Me 2; 1c Ar = 2,6-C 6H 3-Et 2; 1d Ar = 2,6-C 6H 3- i-Pr 2). All new rhodium complexes have been characterized by a number of physical methods, including multinuclear NMR spectroscopy and X-ray diffraction studies for 1b and 1c. Addition of CHCl 3 to 1a afforded the corresponding rhodium(III) complex trans-Rh(kappa (2)- o-C 6H 4 NCH NAr)(CHCl 2)(Cl)(acac) ( 2). Addition of B 2cat 3 (cat = 1,2-O 2C 6H 4) to 1 gave zwitterionic Rh(eta (6)-catBcat)(kappa (2)- o-C 6H 4 NCH NAr) ( 3). The molecular structure of 3b has been confirmed by a single crystal X-ray diffraction study and shows that the N 2Rh fragment is bound to the catBcat anion via one of the catecholato groups in a eta (6)-fashion. These complexes have also been examined for their ability to catalyze the hydroboration of a series of vinylarenes. Reactions using catecholborane and pinacolborane seem to proceed largely through a dehydrogenative borylation mechanism to give a number of boronated products.  相似文献   

4.
Addition of principally sigma-donating ligands such as THF, chelating diethers, or 1,2-bis(dimethyl)phosphinoethane to eta(9),eta(5)-bis(indenyl)zirconium sandwich complexes, (eta(9)-C(9)H(5)-1,3-R(2))(eta(5)-C(9)H(5)-1,3-R(2))Zr (R = alkyl or silyl), induces haptotropic rearrangement to afford (eta(6)-C(9)H(5)-1,3-R(2))(eta(5)-C(9)H(5)-1,3-R(2))ZrL adducts. Examples where L = THF and DME have been characterized by X-ray diffraction and revealed significant buckling of the eta(6) benzo ring, consistent with reduction of the arene, and highlight the importance of the zirconium(IV) canonical form. For the THF-induced haptotropic rearrangements, the thermodynamic driving force for ring migration has been measured as a function of indenyl substituent and demonstrates silylated sandwiches favor THF coordination and the eta(6),eta(5) bonding motif over their alkylated counterparts. In the case of chelating diethers, measurement of the corresponding equilibrium constants establish more stable eta(6),eta(5) adducts with five- over four-membered chelates and with smaller oxygen and carbon backbone substituents. Kinetic studies on both THF and DME addition to (eta(9)-C(9)H(5)-1,3-(SiMe(3))(2))(eta(5)-C(9)H(5)-1,3-(SiMe(3))(2))Zr established a first-order dependence on the incoming ligand, consistent with a mechanism involving direct attack of the incoming nucleophile on the eta(9),eta(5) sandwich. These results further highlight the ability of the indenyl ligand to smoothly adjust hapticity to meet the electronic requirements of the metal center.  相似文献   

5.
Uranium(IV) and thorium(IV) bis(alkyl) complexes of the type (C5Me5)2AnR2 (An = U, Th; R = CH3, CH2Ph) activate the sp2 and sp3 hybridized C-H bonds in pyridine N-oxide and lutidine N-oxide to produce the corresponding cyclometalated complexes, (C5Me5)2An(R)[eta2-(O,C)-ONC5H4] and (C5Me5)2An(R)[eta2-(O,C)-ON-2-CH2-5-CH3-C5H3]. These provide rare examples of C-H activation chemistry mediated by actinide metal centers. This chemistry is in contrast to the known oxygen atom transfer reactivity patterns of pyridine N-oxides with oxophilic metal complexes and constitutes a new mode of reactivity for pyridine N-oxides.  相似文献   

6.
The synthesis, structures, and unusual reactivity of (C5R5)2ZrR'(ClPh)+ chlorobenzene complexes are described. The reaction of (C5R5)2ZrR'2 with [Ph3C][B(C6F5)4] in C6D5Cl affords [(C5R5)2ZrR'(ClC6D5)][B(C6F5)4] chlorobenzene complexes (1-d5, R' = CH2Ph and (C5R5)2 = (C5H5)2; 2a-d-d5, R' = Me and (C5R5)2 = rac-(1,2-ethylene(bis)indenyl) (2a), (C5H5)2 (2b), (C5H4Me)2 (2c), (C5Me5)2 (2d, C5Me5 = Cp*)). Complexes 1 and 2b,c are thermally robust but are converted to [{(C5R5)2Zr(mu-Cl)}2][B(C6F5)4]2 (4b,c) by a photochemical process in ClPh solution. In contrast, 2d undergoes facile thermal ortho-C-H activation to yield [Cp*2Zr(eta2-C,Cl-2-Cl-C6H4)][B(C6F5)4] (5), which slowly rearranges to [(eta4,eta1-C5Me5C6H4)Cp*ZrCl][B(C6F5)4] (6) via beta-Cl elimination and benzyne insertion into a Zr-CCp* bond. The higher thermal reactivity of 2d versus that of 1 and 2b,c is attributed to steric crowding associated with the Cp* ligands of 2d, which forces a ClPh ortho-hydrogen close to the Zr-Me group.  相似文献   

7.
The ruthenium complexes, [(eta5-C5R5)Ru(CH3CN)3]PF6 (1-Cp*, R = Me; 1-Cp, R = H), underwent reaction with both 1-(2-chloro-1-methylvinyl)-2-pentynyl-(Z)-cyclopentene (6-Z) and 1-(2-chloro-1-methylvinyl)-2-pentynyl-(E)-cyclopentene (6-E) to give (eta5-C5R5)Ru[eta6-(5-chloro-4-methyl-6-propylindan)]PF6 (7-Cp*, R = Me; 7-Cp, R = H). In a similar fashion, reaction of 1-Cp and 1-Cp* with 1-isopropenyl-2-pent-1-ynylcyclopentene (8) led to the formation of (eta5-C5R5)Ru(eta6-4-methyl-6-propylindan)]PF6 (9-Cp*, R = Me; 9-Cp, R = H). The reaction of 1-Cp* with 8 at -60 degrees C in CDCl3 solution led to observation of the eta6-dienyne complex, (eta5-C5Me5)Ru[eta6-(1-isopropenyl-2-pent-1-ynylcyclopentene)]PF6 (10), by 1H NMR spectroscopy. Complexes 7-Cp and 10 were characterized by X-ray crystallographic analysis.  相似文献   

8.
Reactions of [(eta5-C5H5)Ru(PR'3)2(Cl)] with NaBAr(F) [BAr(F)-=B{3,5-[C6H3(CF3)2]}4-; PR'3=PEt3 or 1/2Et2PCH2CH2PEt2) (depe)] and PR2H (R=Ph, a; tBu, b; Cy, c) in C6H5F, or of related cationic Ru(N2) complexes with PR2H in C6H5F, gave the secondary phosphine complexes [(eta5-C5H5)Ru(PR'3)2(PR2H)]+ BAr(F)- (PR'3=PEt3, 3 a-c; 1/2depe, 4 a,b) in 65-91 % yields. Additions of tBuOK (3 a, 4 a; [D6]acetone) or NaN(SiMe3)2 (3 b,c, 4 b; [D8]THF) gave the title complexes [(eta5-C5H5)Ru(PEt3)2(PR2)] (5 a-c) and [(eta5-C5H5)Ru(depe)(PR2)] (6 a,b) in high spectroscopic yields. These complexes were rapidly oxidized in air; with 5 a, [(eta5-C5H5)Ru(PEt3)2{P(=O)Ph2}] was isolated (>99 %). The reaction of 5 a and elemental selenium yielded [(eta5-C5H5)Ru(PEt3)2{P(=Se)Ph2}] (70 %); selenides from 5 c and 6 a were characterized in situ. Competitive deprotonation reactions showed that 5 a is more basic than the rhenium analog [(eta5-C5H5)Re(NO)(PPh3)(PPh2)], and that 6 b is more basic than PtBu3 and P(iPrNCH2CH2)3N. The latter is one of the most basic trivalent phosphorus compounds [pK(a)(acetonitrile) 33.6]. Complexes 5 a-c and 6 b are effective ligands for Pd(OAc)2-catalyzed Suzuki coupling reactions: 6 b gave a catalyst nearly as active as the benchmark organophosphine PtBu3; 5 a, with a less bulky and electron-rich PR2 moiety, gave a less active catalyst. The reaction of 5 a and [(eta3-C3H5)Pd(NCPh)2]+ BF4- gave the bridging phosphido complex [(eta5-C5H5)Ru(PEt3)2(PPh2)Pd(NCPh)(eta3-C3H5)]+ BAr(F)- in approximately 90 % purity. The crystal structure of 4 a is described, as well as substitution reactions of 3 b and 4 b.  相似文献   

9.
The complexes [(eta5-RC5H4)Ru(CH3CN)3]PF6(R = H, CH3) react with DCVP (DCVP = Cy2PCH=CH2) at room temperature to produce the phosphaallyl complexes [(eta5-C5H5)Ru(eta1-DCVP)(eta3-DCVP)]PF6 and [(eta5-MeC5H4)Ru(eta1-DCVP)(eta3-DCVP)]PF6. Both compounds react with a variety of two-electron donor ligands displacing the coordinated vinyl moiety. In contrast, we failed to prepare the phosphaallyl complexes [(eta5-C5Me5)Ru(eta1-DCVP)(eta3-DCVP)]PF6, [(eta5-MeC5H4)Ru(CO)(eta3-DCVP)]PF6 and [(eta5-C5Me5)Ru(CO)(eta3-DPVP)]PF6(DPVP = Ph2PCH=CH2).The compounds [(eta5-MeC5H4)Ru(CO)(CH3CN)(DPVP)]PF6 and [(eta5-C5Me5)Ru(CO)(CH3CN)(DPVP)]PF6 react with DMPP (3,4-dimethyl-1-phenylphosphole) to undergo [4 + 2] Diels-Alder cycloaddition reactions at elevated temperature. Attempts at ruthenium catalyzed hydration of phenylacetylene produced neither acetophenone nor phenylacetaldehyde but rather dimers and trimers of phenylacetylene. The structures of the complexes described herein have been deduced from elemental analyses, infrared spectroscopy, 1H, 13C{1H}, 31P{1H} NMR spectroscopy and in several cases by X-ray crystallography.  相似文献   

10.
1, 1'-(3-Oxapentamethylene)dicyclopentadiene [O(CH(2)CH(2)C(5)H(5))(2)], containing a flexible chain-bridged group, was synthesized by the reaction of sodium cyclopentadienide with bis(2-chloroethyl) ether through a slightly modified literature procedure. Furthermore, the binuclear cobalt(III) complex O[CH(2)CH(2)(eta(5)-C(5)H(4))Co(CO)I(2)](2) and insoluble polynuclear rhodium(III) complex {O[CH(2)CH(2)(eta(5)-C(5)H(4))RhI(2)](2)}(n) were obtained from reactions of with the corresponding metal fragments and they react easily with PPh(3) to give binuclear metal complexes, O[CH(2)CH(2)(eta(5)-C(5)H(4))Co(PPh(3))I(2)](2) and O[CH(2)CH(2)(eta(5)-C(5)H(4))Rh(PPh(3))I(2)](2), respectively. Complexes react with bidentate dilithium dichalcogenolato ortho-carborane to give eight binuclear half-sandwich ortho-carboranedichalcogenolato cobalt(III) and rhodium(III) complexes O[CH(2)CH(2)(eta(5)-C(5)H(4))Co(PPh(3))(E(2)C(2)B(10)H(10))](2) (E = S and Se), O[CH(2)CH(2)(eta(5)-C(5)H(4))](2)Co(2)(E(2)C(2)B(10)H(10)) (E = S and Se), O[CH(2)CH(2)(eta(5)-C(5)H(4))Co(E(2)C(2)B(10)H(10))](2) (E = S and Se and O[CH(2)CH(2)(eta(5)-C(5)H(4))Rh(PPh(3))(E(2)C(2)B(10)H(10))](2) (E = S and Se). All complexes have been characterized by elemental analyses, NMR spectra ((1)H, (13)C, (31)P and (11)B NMR) and IR spectroscopy. The molecular structures were determined by X-ray diffractometry.  相似文献   

11.
The effects of different terphenyl ligand substituents on the quintuple Cr-Cr bonding in arylchromium(I) dimers stabilized by bulky terphenyl ligands (Ar) were investigated. A series of complexes, ArCrCrAr (1-4; Ar = C6H2-2,6-(C6H3-2,6-iPr2)2-4-X, where X = H, SiMe3, OMe, and F), was synthesized and structurally characterized. Their X-ray crystal structures display similar trans-bent C(ipso)CrCrC(ipso) cores with short Cr-Cr distances that range from 1.8077(7) to 1.8351(4) A. There also weaker Cr-C interactions [2.294(1)-2.322(2) A] involving an C(ipso) of one of the flanking aryl rings. The data show that the changes induced in the Cr-Cr bond length by the different substituents X in the para positions of the central aryl ring of the terphenyl ligand are probably a result of packing rather than electronic effects. This is in agreement with density functional theory (DFT) calculations, which predict that the model compounds (4-XC6H4)CrCr(C6H4-4-X) (X = H, SiMe3, OMe, and F) have similar geometries in the gas phase. Magnetic measurements in the temperature range of 2-300 K revealed temperature-independent paramagnetism in 1-4. UV-visible and NMR spectroscopic data indicated that the metal-metal-bonded solid-state structures of 1-4 are retained in solution. Reduction of (4-F3CAr')CrCl (4-F3CAr' = C6H2-2,6-(C6H3-2,6-iPr2)2-4-CF3) with KC8 gave non-Cr-Cr-bonded fluorine-bridged dimer {(4-F3CAr')Cr(mu-F)(THF)}2 (5) as a result of activation of the CF3 moiety. The monomeric, two-coordinate complexes [(3,5-iPr2Ar*)Cr(L)] (6, L = THF; 7, L = PMe3; 3,5-iPr2Ar* = C6H1-2,6-(C6H-2,4,6-iPr3)2-3,5-iPr2) were obtained with use of the larger 3,5-Pri2-Ar* ligand, which prevents Cr-Cr bond formation. Their structures contain almost linearly coordinated CrI atoms, with high-spin 3d5 configurations. The addition of toluene to a mixture of (3,5-iPr2Ar*)CrCl and KC8 gave the unusual dinuclear benzyl complex [(3,5-iPr2Ar*)Cr(eta3:eta6-CH2Ph)Cr(Ar*-1-H-3,5-iPr2)] (8), in which a C-H bond from a toluene methyl group was activated. The electronic structures of 5-8 have been analyzed with the aid of DFT calculations.  相似文献   

12.
The reaction of Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(5)-C), 7, with Pt(PBu(t)(3))(2) yielded two products Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))], 8, and Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))](2), 9. Compound 8 contains a Ru(5)Pt metal core in an open octahedral structure. In solution, 8 exists as a mixture of two isomers that interconvert rapidly on the NMR time scale at 20 degrees C, DeltaH() = 7.1(1) kcal mol(-1), DeltaS() = -5.1(6) cal mol(-)(1) K(-)(1), and DeltaG(298)(#) = 8.6(3) kcal mol(-1). Compound 9 is structurally similar to 8, but has an additional Pt(PBu(t)(3)) group bridging an Ru-Ru edge of the cluster. The two Pt(PBu(t)(3)) groups in 9 rapidly exchange on the NMR time scale at 70 degrees C, DeltaH(#) = 9.2(3) kcal mol(-)(1), DeltaS(#) = -5(1) cal mol(-)(1) K(-)(1), and DeltaG(298)(#) = 10.7(7) kcal mol(-1). Compound 8 reacts with hydrogen to give the dihydrido complex Ru(5)(CO)(11)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))](mu-H)(2), 10, in 59% yield. This compound consists of a closed Ru(5)Pt octahedron with two hydride ligands bridging two of the four Pt-Ru bonds.  相似文献   

13.
Group 5 metal complexes [M(eta5-C5H5)[eta5-C5H4SiMe2(CH2-eta]2-CH=CH2)]X] (M = Nb, X = Me, CH2Ph, CH2SiMe3; M = Ta, X = Me, CH2Ph) and [Ta(eta5-C5Me5)[eta5-C5H4SiMe2(CH2-eta2-CH=CH2)]X] (X = Cl, Me, CH2Ph, CH2SiMe3) containing a chelating alkene ligand tethered to a cyclopentadienyl ring have been synthesized in high yields by reduction with Na/Hg (X = Cl) and alkylation with reductive elimination (X = alkyl) of the corresponding metal(iv) dichlorides [M(eta5-Cp)[eta5-C5H4SiMe2(CH2CH=CH2)]Cl2] (Cp = C5H5, M = Nb, Ta, Cp = C5Me5, M = Ta). These chloro- and alkyl-alkene coordinated complexes react with CO and isocyanides [CNtBu, CN(2,6-Me2C6H3)] to give the ligand-substituted metal(III) compounds [M(eta5-Cp)[eta5-C5H4SiMe2(CH2CH=CH2)]XL] (X = Cl, Me, CH2Ph, CH2SiMe3). Reaction of the chloro-alkene tantalum complex with LiNHtBu results in formation of the imido hydride derivative [Ta(eta5-C5Me5)[eta5-C5H4SiMe2(CH2CH=CH2)]H(NtBu)]. NMR studies for all of the new compounds and DFT calculations for the alkene-coordinated metal complexes are compared with those known for related group 4 metal cations.  相似文献   

14.
The bis(ethylene) Rh species TpMe2Rh(C2H4)2(1*) (TpMe2 = tris(3,5-dimethyl-1-pyrazol-1-yl)hydroborate) has been obtained from [RhCl(C2H4)2]2 and KTpMe2. Complex 1* easily decomposes in solution to give mainly the butadiene species TpMe2Rh(eta74-C4H6). In the solid state its thermal decomposition follows a different course and the allyl TpMe2RhH(syn-C3H4Me) is cleanly obtained as a mixture of exo and endo isomers. The complexes Tp'Rh(C2H4)2 (Tp' = Tp, TpMe2) afford the monosubstituted species Tp'Rh(C2H4)(PR3) upon reaction with PR3 but react differently with L = CO or CNR: the Tp compound gives dinuclear [TpRh]2(mu-L)3 complexes, while, in the case of 1*, TpMe2Rh(C2H4)(L) species are obtained. The ethylene ligand of complexes TpMe2Rh(C2H4)(PR3) is labile, and several peroxo compounds of composition TpMe2Rh(O2)(PR3) have been isolated by their reaction with O2. All the mononuclear Rh(I) complexes are formulated as 18e- trigonal bipyramidal species on the basis of IR and NMR spectroscopic studies. A series of dihydride complexes of Rh(III) of formulation Tp'RhH2(PR3) have been prepared by the hydrogenation of the corresponding ethylene derivatives. Complexes [TpRh]2(mu-CNCy)3, TpMe2Rh(C2H4)(PEt3), and TpMe2Rh(O2)(PEt3) have been further characterized by X-ray diffraction studies.  相似文献   

15.
The synthesis and characterization of the complexes [(eta(5)-C(5)H(4)SiMe(3))(2)Ti(C&tbd1;CSiMe(3))(2)]MX (M = Cu, X = OTf (2), SC(6)H(5) (4), SC(6)H(4)NMe(2)-2 (5), SC(6)H(4)CH(2)NMe(2)-2 (6), S-1-C(10)H(6)NMe(2)-8 (7), Cl (8), (N&tbd1;CMe)PF(6) (9); M = Ag, X = OTf (3)) are described. These complexes contain monomeric MX entities, which are eta(2)-bonded by both alkyne functionalities of the organometallic bis(alkyne) ligand [(eta(5)-C(5)H(4)SiMe(3))(2)Ti(C&tbd1;CSiMe(3))(2)] (1). The reactions of 2 with the Lewis bases N&tbd1;CPh and N&tbd1;CC(H)=C(H)C&tbd1;N afford the cationic complexes {[(eta(5)-C(5)H(4)SiMe(3))(2)Ti(C&tbd1;CSiMe(3))(2)]Cu(N&tbd1;CPh)}OTf (10) and {[(eta(5)-C(5)H(4)SiMe(3))(2)Ti(C&tbd1;CSiMe(3))(2)]Cu}(2)(N&tbd1;CC(H)=C(H)C&tbd1;N)(OTf)(2) (11), respectively. The X-ray structures of 2, 3, and 6 have been determined. Crystals of 2 are monoclinic, space group P2(1)/c, with a = 12.8547(7) ?, b = 21.340(2) ?, c = 18.279(1) ?, beta = 133.623(5) degrees, V= 3629.7(5) ?(3), Z = 4, and final R = 0.047 for 5531 reflections with I >/= 2.5sigma(I) and 400 variables. The silver triflate complex 3 is isostructural, but not isomorphous, with the corresponding copper complex 2, and crystals of 3 are monoclinic, space group P2(1)/c, with a = 13.384(3) ?, b = 24.55(1) ?, c = 13.506(3) ?, beta = 119.21(2) degrees, V = 3873(2) ?(3), Z = 4, and final R = 0.038 for 3578 reflections with F >/= 4sigma(F) and 403 variables. Crystals of the copper arenethiolate complex 6 are triclinic, space group P&onemacr;, with a = 11.277(3) ?, b = 12.991(6) ?, c = 15.390(6) ?, alpha = 65.17(4) degrees, beta = 78.91(3) degrees, gamma = 84.78(3) degrees, V = 2008(2) ?(3), Z = 2, and final R = 0.079 for 6022 reflections and 388 variables. Complexes 2-11 all contain a monomeric bis(eta(2)-alkyne)M(eta(1)-X) unit (M = Cu, Ag) in which the group 11 metal atom is trigonally coordinated by the chelating bis(eta(2)-alkyne) entity Ti(C&tbd1;CSiMe(3))(2) and an eta(1)-bonded monoanionic ligand X. The copper arenethiolate complexes 4-7 are fluxional in solution.  相似文献   

16.
The 16-electron half-sandwich rhodium complex [Cp*Rh{E2C2(B10H10)}] [Cp* = eta5-C5Me5, E = S (1a), Se (1b)] [Cp*Rh{E2C2(B10H10)} = eta5-pentamethylcyclopentadienyl[1,2-dicarba-closo-dodecaborane(12)-dichalcogenolato]rhodium] reacted with Mo(CO)3(py)3 in the presence of BF3.Et2O in THF solution to afford the {Cp*Rh[E2C2(B10H10)]}2Mo(CO)2 (E = S (3a); Se (3b)), {Cp*Rh[S2C2(B10H10)]}{Mo(CO)2[S2C2(B10H10)]} (4). The voluminous di-tert-butyl substituted Cp half-sandwich rhodium complex [Cp'Rh{E2C2(B10H10)}] [E = S (2a), Se (2b)] [CpRh{E2C2(B10H10)} = eta5-(1,3-di(tert-butyl)cyclopentadienyl-[1,2-dicarba-closo-dodecaborane(12)-dichalcogenolato]rhodium) reacted with W(CO)3(py)3 in the presence of BF3.Et2O in THF solution to give the {Cp'Rh[S2C2(B10H10)]}{W(CO)2[S2C2(B10H10)]} (5) and {Cp'Rh[Se2C2(B10H10)]}(mu-CO)[W(CO)3] (6), respectively. The complexes have been fully characterized by IR and NMR spectroscopy as well as by elemental analyses. The X-ray crystal structures of the complexes 3-6 are reported.  相似文献   

17.
The reactivity of isolobal molybdenum carbonylmetalates containing a 2-boratanaphthalene, [Mo(eta5-2,4-MeC9H6BMe)(CO)3]- (5a) and [Mo(eta5-2,4-MeC9H6BNi-Pr2)(CO)3]- (5b), a 1-boratabenzene, [Mo(eta5-3,5-Me2C5H3BNi-Pr2)(CO)3]- (8), or a functionalized cyclopentadienyl ligand, the new metalate [Mo(eta5-C5H4Ph)(CO)3]- (7) and [Mo(eta5-C5H4NMe2)(CO)3]- (9), toward palladium (I and II) or platinum (I and II) complexes, such as trans-[PdCl2(NCPh)2], [Pd2(NCMe)6](BF4)2, trans-[PtCl2(PEt3)2], and [N(n-Bu)4]2 [Pt2Cl4(CO)2], has been investigated, and this has allowed an evaluation of the influence of the pi-bonded ligands on the structures and unprecedented coordination modes observed in the resulting metal-metal-bonded heterometallic clusters. The new 58 CVE planar-triangulated centrosymmetric clusters, [Mo2Pd2(eta5-C5H4Ph)2(CO)6(PEt3)2] (11), [Mo2Pd2(eta5-2,4-MeC9H6BNi-Pr2)2(CO)6] (12), [Mo(2)Pd(2)(eta5-3,5-Me2C5H3BNi-Pr2)2(CO)6] (13), [Mo2Pd2(eta5-C5H4NMe2)2(CO)6(PEt3)2] (15), [Mo2Pt2(eta5-C5H4NMe2)2(CO)6(PEt3)2] (16), and [Mo2Pt2(eta5-C5H4NMe2)2(CO)8] (20), have been characterized by single-crystal X-ray diffraction. Their structural features were compared with those of the 54 CVE cluster [Re2Pd2(eta5-C4H4BPh)2(CO)6)] (4), previously obtained from the borole-containing metalate [Re(eta5-C4H4BPh)(CO)3]- (2), in which a 2e-3c B-C(ipso)-Pd interaction involving the pi-ring was observed. As an extension of what has been observed in 4, clusters 12 and 13 present a direct interaction of the boratanaphthalene (12) and the boratabenzene (13) ligands with palladium. In clusters 11, 15, 16, and 20, the pi-ring does not interact with the palladium (11 and 15) or platinum centers (16 and 20), which confers to these clusters a geometry very similar to that of [Mo2Pd2(eta5-C5H5)2(CO)6(PEt3)2] (3b). The carbonylmetalates [Mo(pi-ring)(CO)3]- are thus best viewed as formal four electron donors which bridge a dinuclear d9-d9 unit. The orientation of this building block in the clusters influences the shape of their metal cores and the bonding mode of the bridging carbonyl ligands. The crystal structure of new centrosymmetric complex [Mo(eta5-C5H4Ph)(CO)3]2 (10) was determined, and it revealed intramolecular contacts of 2.773(4) A between the carbon atoms of carbonyl groups across the metal-metal bond and intermolecular bifurcated interactions between the carbonyl oxygen atoms (2.938(4) and 3.029(4) A), as well as intermolecular C-H...pi(Ar)(C=C) interactions (2.334(3) and 2.786(4) A) involving the phenyl substituents.  相似文献   

18.
Facile access to the eta2-alkyne-1-thio complexes [Tp'M(CO)2{eta2-(BnS)CC(S)}] (Tp' = hydrotris(3,5-dimethylpyrazolyl)borate; Bn = benzyl; M = Mo, W) by reductive removal of one benzyl group in the corresponding bis(benzylthio)acetylene complexes, [Tp'M(CO)2{eta2-(BnS)CC(SBn)}](PF6), has been thoroughly investigated. Experimental evidence of the intermediates, [Tp'M(CO)2{eta2-(BnS)CC(SBn)}] (M = Mo, W), and the fate of the cleaved benzyl group by isolation of the byproduct, [Tp'W(CO){C(O)Bn}{eta2-(BnS)CC(SBn)}], is provided. Neutral eta2-alkyne-1-thio complexes [Tp'M(CO)2{eta2-(BnS)CC(S)}] bearing a free terminal sulfur atom have been established as monodentate ligands L in homoleptic pentanuclear [M'L4]2+ complexes with nickel(II) and palladium(II). Comparison of the NMR and IR spectroscopic as well as cyclovoltammetric data of the heterobimetallic complexes with the free thio-alkyne complexes reveals a strong electronic coupling of the redox-active eta2-CC-bound metal centers and the sulfur-coordinated metal ion.  相似文献   

19.
The prototype hetero-binuclear complexes containing metal-metal bonds, {CpRh[E2C2(B10H10)]}[Fe(CO)3] (Cp = Cp* = eta 5-Me5C5, E = S(5a), Se(5b); Cp = Cp = eta 5-1,3-tBu2C5H3, E = S(6a), Se(6b)) and {CpCo[E2C2(B10H10)]}[Fe(CO)3] (Cp = Cp* = eta 5-Me5C5, E = S(7a), Se(7b); Cp = Cp = eta 5-C5H5, E = S(8a), Se(8b)) were obtained from the reactions of 16-electron complexes CpRh[E2C2(B10H10)] (Cp = Cp*, E = S(1a), Se(1b); Cp = Cp, E = S(2a), Se(2b)), CpCo[E2C2(B10H10)] (Cp = Cp*, E = S(3a), Se(3b); Cp = Cp, E = S(4a), Se(4b)) with Fe(CO)5 in the presence of Me3NO. The molecular structures of {Cp*Rh[E2C2(B10H10)]}[Fe(CO)3] (E = S(5a), Se(5b)), {CpRh[S2C2(B10H10)]}[Fe(CO)3] (6a) {Cp*Co[S2C2(B10H10)]}[Fe(CO)3] (7a) and {CpCo[S2C2(B10H10)]}[Fe(CO)3] (8a) have been determined by X-ray crystallography. All these complexes were characterized by elemental analysis and IR and NMR spectra.  相似文献   

20.
The synthesis and reactivity of [Tp*Zr(CH2Ph)2][B(C6F5)4] (2, Tp* = HB(3,5-Me2pz)3, pz = pyrazolyl) have been explored to probe the possible role of Tp'MR2+ species in group 4 metal Tp'MCl3/MAO olefin polymerization catalysts (Tp' = generic tris(pyrazolyl)borate). The reaction of Tp*Zr(CH2Ph)3 (1) with [Ph3C][B(C6F5)4] in CD2Cl2 at -60 degrees C yields 2. 2 rearranges rapidly to [{(PhCH2)(H)B(mu-Me2pz)2}Zr(eta2-Me2pz)(CH2Ph)][B(C6F5)4] (3) at 0 degrees C. Both 2 and 3 are highly active for ethylene polymerization and alkyne insertion. Reaction of 2 with excess 2-butyne yields the double insertion product [Tp*Zr(CH2Ph)(CMe=CMeCMe=CMeCH2Ph)][B(C6F5)4] (4). Reaction of 3 with excess 2-butyne yields [{(PhCH2)(H)B(mu-Me2pz)2}Zr(Cp*)(eta2-Me2pz)][B(C6F5)4] (6, Cp* = C5Me5) via three successive 2-butyne insertions, intramolecular insertion, chain walking, and beta-Cp* elimination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号