首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The grazing incidence surface-induced dissociation (GI-SID) of n-hexadecylpyridinium and verapamil ions generated by fission fragment desorption was studied. These molecules show the effect of enhanced surface-induced dissociation at grazing incidence as it was observed in former experiments with metal organic ions. A liquid film of perfluorinated polyether is used as collision surface. Small hydrocarbon fragment ions predominate in the GI-SID spectra. Pyridine ions appear as specific fragment ions in the GI-SID spectrum of n-hexadecylpyridinium. The GI-SID conversion efficiency varies in the range 40-70%. The experimental results are discussed within the scope of a quantum mechanical model which is based on the accumulation of internal molecular energy by resonant excitation of collective vibrational states and energy transfer to a trap bond due to dipole-dipole interactions. In this context the GI-SID spectra of n-hexadecylpyridinium and verapamil ions are compared with the fragmentation occurring in regular (252)Cf plasma desorption mass spectrometry.  相似文献   

2.
A theoretical model and experimental time-of-flight mass spectrometric data for the fragmentation of molecules grazing along surfaces at velocities v = 105–106 cm/s are presented. The effect of enhanced surface-induced dissociation at grazing incidence (GI-SID) is shown for hexadecylpyridine ions. The velocity dependence of the GI-SID fragmentation probability is studied in experiments with adduct ions of cyclodextrin derivatives. Surfaces used in the various collision experiments are aluminum oxide, gold, and a liquid film of perfluorinated polyether. In the theoretical model of the GI-SID effect we consider polyatomic molecules with substructures consisting of chains of identical biatomic dipoles. Because of the interaction with the periodic Coulomb field of the surface, collective vibrational excitations (excimols) are induced in these chains. Energy accumulation of several excimols and a subsequent energy transfer to a trap bond can induce its dissociation. An analytical expression for the velocity dependent GI-SID fragmentation probability is given, which is in good agreement with the experimental data.  相似文献   

3.
The product ion mass spectra of protonated and cationated peptides of relative molecular mass (RMM) 555–574 Da have been obtained by surface-induced dissociation of MH+ and [M + Cat] ions in a four-sector tandem mass spectrometer equipped with a specially designed collision cell. A linked scan of the electric and magnetic sector field strengths of the second mass spectrometer was used to transmit the fragment ions arising from collisions with a stainless steel surface. The resulting mass spectra contained broad metastable ion peaks produced by the dissociation of MH+ and [M + Cat]+ ions before the second magnetic sector, in the fourth field-free region of the instrument.  相似文献   

4.
Ammodytoxins (Atxs) are presynaptically neurotoxic phospholipases present in Vipera ammodytes ammodytes snake venom. Atxs show a high sequence homology and contain 14 cysteines which form seven biologically relevant disulfide bridges-connecting non-neighboring cysteines. Formic acid cleavage was performed to confirm protein sequences by MALDI RTOF MS and resulted in 95.6% sequence coverage exhibiting only few formylations. Cysteine-containing peptides showed adjacent signals 2 and/or 4 Da lower (according to the number of cysteines present in the peptide) than the theoretical molecular weight indicating disulfide bridge rearrangement. Post-source decay (PSD) and high-energy collision-induced dissociation (CID) at 20 keV experiments showed fragmentation pattern unique for the reduced, thiol group containing and the oxidized, disulfide bridge harboring peptides. Besides typical low-energy fragment ions observed during PSD experiments (a-, b-, y-type ions), additional high-energy fragment ions (c-, x-, w-, d-type and internal fragments) of significant intensity were generated during fragmentation at 20 keV. In the case of charge directing N- and C-termini, x- and w-type ions were also observed during PSD. Good and up to complete sequence coverage was achieved for all studied peptides from Atxs in the case of high-energy CID, whereas PSD lacked information particularly for larger peptides.  相似文献   

5.
Comparative MS/MS studies of singly and doubly charged electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) precursor peptide ions are described. The spectra from these experiments have been evaluated with particular emphasis on the data quality for subsequent data processing and protein/amino acid sequence identification. It is shown that, once peptide ions are formed by ESI or MALDI, their charge state, as well as the collision energy, is the main parameter determining the quality of collision-induced dissociation (CID) MS/MS fragmentation spectra of a given peptide. CID-MS/MS spectra of singly charged peptides obtained on a hybrid quadrupole orthogonal time-of-flight mass spectrometer resemble very closely spectra obtained by matrix-assisted laser desorption/ionization post-source decay time-of-flight mass spectrometry (MALDI-PSD-TOFMS). On the other hand, comparison of CID-MS/MS spectra of either singly or doubly charged ion species shows no dependence on whether ions have been formed by ESI or MALDI. This observation confirms that, at the time of precursor ion selection, further mass analysis is effectively decoupled from the desorption/ionization event. Since MALDI ions are predominantly formed as singly charged species and ESI ions as doubly charged, the associated difference in the spectral quality of MS/MS spectra as described here imposes direct consequences on data processing, database searching using ion fragmentation data, and de novo sequencing when ionization techniques are changed.  相似文献   

6.
The collision-induced dissociation characteristics of amidinated and unmodified tryptic peptides are compared using an ion trap mass spectrometer with both electrospray ionization and matrix-assisted laser/desorption ionization (MALDI). Several fragmentation pathways in a number of tryptic peptides of various precursor charge states are found to be enhanced. The additional information conveyed by the observed fragment ions should facilitate protein identifications.  相似文献   

7.
We report here surface-induced dissociation spectra of three multiply charged peptides: doubly protonated angiotensin I, doubly protonated renin substrate, and triply protonated melittin. For comparison, the collision-activated dissociation spectra of renin substrate and melittin are also presented. The spectra show that surface-induced dissociation provides structural information on multiply charged peptides at the picomole per microliter sample concentrations compatible with electrospray ionization. For multiply protonated angiotensin I, renin substrate, and melittin, surface collisions (100–165 eV) favor a limited number of fragmentation pathways, which are the same as those favored in collision-activated dissociation experiments.  相似文献   

8.
The gas-phase fragmentation reactions of singly protonated aromatic amino acids, their simple peptides as well as simple models for intermolecular disulfide bonds have been examined using a commercially available hybrid linear ion trap-Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Low-energy collision-induced dissociation (CID) reactions within the linear ion trap are compared with electron-induced dissociation (EID) reactions within the FT-ICR cell. Dramatic differences are observed between low-energy CID (which occurs via vibrational excitation) and EID. For example, the aromatic amino acids mainly fragment via competitive losses of NH(3) and (H(2)O+CO) under CID conditions, while side-chain benzyl cations are major fragment ions under EID conditions. EID also appears to be superior in cleaving the S-S and S-C bonds of models of peptides containing an intermolecular disulfide bond. Systematic studies involving fragmentation as a function of electron energy reveal that the fragmentation efficiency for EID occurs at high electron energy (more than 10 eV) compared with the low-electron energy (less than 0.2 eV) typically observed for electron capture dissociation fragmentation. Finally, owing to similarities between the types of fragment ions observed under EID conditions and those previously reported in ultraviolet photodissociation experiments and the electron-ionization mass spectra, we propose that EID results in fragmentation via electronic excitation and vibrational excitation. EID may find applications in analyzing singly charged molecular ions formed by matrix-assisted laser desorption ionization.  相似文献   

9.
The implementation of surface-induced dissociation (SID) to study the fast dissociation kinetics (sub-microsecond dissociation) of peptides in a MALDI TOF instrument has been reported previously. Silicon nanoparticle assisted laser desorption/ionization (SPALDI) now allows the study of small molecule dissociation kinetics for ions formed with low initial source internal energy and without MALDI matrix interference. The dissociation kinetics of N(CH3)4+ and N(CD3)4+ were chosen for investigation because the dissociation mechanisms of N(CH3)4+ have been studied extensively, providing well-characterized systems to investigate by collision with a surface. With changes in laboratory collision energy, changes in fragmentation timescale and dominant fragment ions were observed, verifying that these ions dissociate via unimolecular decay. At lower collision energies, methyl radical (CH3) loss with a sub-microsecond dissociation rate is dominant, but consecutive H loss after CH3 loss becomes dominant at higher collision energies. These observations are consistent with the known dissociation pathways. The dissociation rate of CH3 loss from N(CH3)4+ formed by SPALDI and dissociated by an SID lab collision energy of 15 eV corresponds to log k = 8.1, a value achieved by laser desorption ionization (LDI) and SID at 5 eV. The results obtained with SPALDI SID and LDI SID confirm that (1) the dissociation follows unimolecular decay as predicted by RRKM calculations; (2) the SPALDI process deposits less initial energy than LDI, which has advantages for kinetics studies; and (3) fluorinated self-assembled monolayers convert about 18% of laboratory collision energy into internal energy. SID TOF experiments combined with SPALDI and peak shape analysis enable the measurement of dissociation rates for fast dissociation of small molecules.  相似文献   

10.
The dissociation of intermolecularly crosslinked peptides was evaluated for a series of peptides with proline or aspartic acid residues positioned adjacent to the crosslinking sites (lysine residues). The peptides were crosslinked with either disuccinimidyl suberate (DSS) or disuccinimidyl L-tartrate (DST), and the influence of proline and aspartic acid residues on the fragmentation patterns were investigated for precursor ions with and without a mobile proton. Collisionally activated dissociation (CAD) spectra of aspartic acid-containing crosslinked peptide ions, doubly-charged with both protons sequestered, were dominated by cleavage C-terminal to the Asp residue, similar to that of unmodified peptides. The proline-containing crosslinked peptides exhibited a high degree of internal ion formation, with the resulting product ions having an N-terminal proline residue. Upon dissociation of the doubly-charged crosslinked peptides, twenty to fifty percent of the fragment ion abundance was accounted for by multiple cleavage products. Crosslinked peptides possessing a mobile proton yielded almost a full series of b- and y-type fragment ions, with only proline-directed fragments still observed at high abundances. Interestingly, the crosslinked peptides exhibited a tendency to dissociate at the amide bond C-terminal to the crosslinked lysine residue, relative to the N-terminal side. One could envision updating computer algorithms to include these crosslinker specific product ions--particularly for precursor ions with localized protons--that provide complementary and confirmatory information, to offer more confident identification of both the crosslinked peptides and the location of the crosslink, as well as affording predictive guidelines for interpretation of the product-ion spectra of crosslinked peptides.  相似文献   

11.
In this paper, we show that ion trap mass spectrometers can differentiate acetylation and carbamylation modifications based on database search results for a lens protein sample. These types of modifications are difficult to distinguish on ion trap instruments because of their lower resolution and mass accuracy. The results were corroborated by using accurate mass information derived from MALDI TOF MS analysis of eluted peptides from a duplicate capillary RPLC separation. Tandem mass spectra of lysine carbamylated peptides were further verified by manual assignments of fragment ions and by the presence of characteristic fragment ions of carbamylated peptides. It was also observed that carbamylated peptides show a strong neutral loss of the carbamyl group in collision induced dissociation (CID), a feature that can be prognostic for carbamylation. In a lens tissue sample of a 67-year-old patient, 12 in vivo carbamylation sites were detected on 7 different lens proteins and 4 lysine acetylation sites were detected on 3 different lens proteins. Among the 12 in vivo carbamylation sites, 9 are novel in vivo carbamylation modification sites. Notably, in vivo carbamylation of γS crystallin, βA4 crystallin, βB1 crystallin, and βB2 crystallin observed in this study have never been reported before.  相似文献   

12.
Electrospray tandem mass spectrometry was used to study the dissociation reactions of [M+Cat]+ (Cat = Na+ and Li+) of Boc-carbo-beta3-peptides. The collision-induced dissociation (CID) spectra of [M+Cat-Boc]+ of these peptides are found to be significantly different from those of [M+H-Boc]+ ions. The spectra are more informative and display both C- and N-terminus metallated ions in addition to characteristic fragment ions of the carbohydrate moiety. Based on the fragmentations observed in the CID spectra of the [M+Cat-Boc]+ ions, it is suggested that the dissociation involves complexes in which the metal ion is coordinated in a multidentate arrangement involving the carbonyl oxygen atoms. The CID spectra of [M+Cat-Boc]+ ions of the peptide acids show an abundant N-terminal rearrangement ion [b(n)+17+Cat]+ which is absent for esters. Further, two pairs of positionally isomeric Boc-carbo-beta3-peptide acids, Boc-NH-Caa(S)-beta-hGly-OH (11) and Boc-NH-beta-hGly-Caa(S)-OH (12), and [Boc-NH-Caa(S)-beta-hGly-Caa(S)-beta-hGly-OH] (13) and [Boc-NH-beta-hGly-Caa(S)-beta-hGly-Caa(S)-OH] (14), were differentiated by the CID of [M+Cat-Boc]+ ions. The CID spectra of compounds 11 and 13 are significantly different from those of 12 and 14, respectively. The abundance of [b(n)+17+Cat]+ ions is higher for peptide acids 12 and 14 with a sugar group at the C-terminus when compared to 11 and 13 which contain a sugar moiety at the N-terminus. The observed differences between the CID spectra of these isomeric peptides are attributed to the difference in the preferential site of metal ion binding and also on the structure of the cyclic intermediate involved in the formation of the rearrangement ion.  相似文献   

13.
Electron capture dissociation of singly and multiply phosphorylated peptides   总被引:12,自引:0,他引:12  
Analysis of phosphotyrosine and phosphoserine containing peptides by nano-electrospray Fourier transform ion cyclotron resonance (FTICR) mass spectrometry established electron capture dissociation (ECD) as a viable method for phosphopeptide sequencing. In general, ECD spectra of synthetic and native phosphopeptides appeared less complex than conventional collision activated dissociation (CAD) mass spectra of these species. ECD of multiply protonated phosphopeptide ions generated mainly c- and z(.)-type peptide fragment ion series. No loss of water, phosphate groups or phosphoric acid from intact phosphopeptide ions nor from the c and z(.) fragment ion products was observed in the ECD spectra. ECD enabled complete or near-complete amino acid sequencing of phosphopeptides for the assignment of up to four phosphorylation sites in peptides in the mass range 1400 to 3500 Da. Nano-scale Fe(III)-affinity chromatography combined with nano-electrospray FTMS/ECD facilitated phosphopeptide analysis and amino acid sequencing from crude proteolytic peptide mixtures.  相似文献   

14.
The 157 nm photofragmentation of native and derivatized oligosaccharides was studied in a linear ion trap and in a home-built matrix-assisted laser desorption/ionization (MALDI) tandem time-of-flight (TOF/TOF) mass spectrometer, and the results were compared with collision-induced dissociation (CID) experiments. Photodissociation produces product ions corresponding to high-energy fragmentation pathways; for cation-derivatized oligosaccharides, it yields strong cross-ring fragment ions and provides better sequence coverage than low- and high-energy CID experiments. On the other hand, for native oligosaccharides, CID yielded somewhat better sequence coverage than photodissociation. The ion trap enables CID hybrid MS3 experiments on the high-energy fragment ions obtained from photodissociation.  相似文献   

15.
Although negative ion fragmentation mass spectra of neutral N-linked carbohydrates (those attached to Asn in glycoproteins) provide much more structural information than spectra recorded in positive ion mode, neutral carbohydrates are reluctant to form negative ions by matrix-assisted laser desorption/ionization (MALDI) unless ionized from specific matrices such as nor-harmane or adducted with anions such as chloride. This paper reports the results of experiments to optimize negative ion formation from adducts of N-linked glycans with respect to ion abundance and fragment ion production. The best results were obtained with 2,4,6-trihydroxyacetophenone (THAP) as the matrix with added ammonium nitrate as the salt providing the anion. This approach is demonstrated to be applicable for a wide range of N-linked glycan structures. Phosphate adducts, analogous to those that are usually encountered in electrospray spectra from N-glycans released by protein N-glycosidase F, were produced by addition of ammonium phosphate to the matrix but in relatively low yield allowing competitive ionization of endogenous anionic compounds leading to complex spectra. Fragmentation of the nitrate adducts, which were formed in higher yield, generally paralleled that seen by collision-induced dissociation following ionization by electrospray, with the first stage of the dissociation being the elimination of the nitrate with a proton from one of the hydroxyl groups of the sugar. The spectra of the resulting [M-H](-) species displayed very specific fragment ions, mainly cross-ring and C-type glycosidic cleavage products, that revealed more structural (linkage and branching) information of the compounds than the mainly glycosidic cleavage products that dominated the positive ion spectra.  相似文献   

16.
A series of hexa- to decapeptides (molecular mass range 800-1200) were labeled with naphthalene-2,3-dicarboxaldehyde, which preferentially reacts with the primary amino groups of a peptide. A highly stable peptide conjugate is formed, which allows selective analysis by fluorescence at excitation and emission wavelengths of 420 and 490 nm, respectively. After removal of unreacted compounds, the peptide conjugates were characterized by matrix-assisted laser desorption/ionization (MALDI) time-of-flight and nano-electrospray ionization (ESI) ion trap mass spectrometry. They readily form both [M + H]+ ions by MALDI and both [M + H]+ and [M + 2H]2+ ions by ESI. Furthermore, the fragmentation behavior of the N-terminally tagged peptides, exhibiting an uncharged N-terminus, was investigated applying post-source decay fragmentation with a curved field reflector and collision-induced dissociation with a quadrupole ion trap. Fragmentation is dominated in both cases by series of a-, b- and y-type ions and [M + H - HCN]+ ions. Peptide bonds adjacent to the fluorescence label were less susceptible to cleavage than the bonds of the non-derivatized peptide ions. In general, the resulting fragment ion patterns were less complex than those of the underivatized peptides.  相似文献   

17.
The fragmentation of peptides and oligosaccharides in the gas phase was investigated by means of electrospray ionization Fourier transform ion cyclotron resonance (FTICR) mass spectrometry coupled with dissociation by a laser-cleavage infrared multiphoton dissociation (IRMPD) technique. In this technique, an IR free-electron laser is used as a tunable source of IR radiation to cause cleavage of the ionized samples introduced into the FTICR cell. The gas-phase IRMPD spectra of protonated peptides (substance P and angiotensin II) and two sodiated oligosaccharides (sialyl Lewis X and lacto-N-fucopentaose III) were obtained over the IR scan range of 5.7-9.5 microm. In the IRMPD spectra for the peptide, fragment ions are observed as y/b-type fragment ions in the range 5.7-7.5 microm, corresponding to cleavage of the backbone of the parent amino acid sequence, whereas the spectra of the oligosaccharides have major peaks in the range 8.4-9.5 microm, corresponding to photoproducts of the B/Y type.  相似文献   

18.
Pulsed Q collision induced dissociation (PQD) was developed to facilitate detection of low-mass reporter ions from labeling reagents (e.g., iTRΑQ) in peptide quantification using an LTQ mass spectrometer (MS). Despite the large number of linear ion traps worldwide, the use and optimization of PQD for protein identification have been limited, in part due to less effective ion fragmentation relative to the collision induced dissociation (CID). PQD expands the m/z coverage of fragment ions to the lower m/z range by circumventing the typical low mass cut-off of an ion trap MS. Since database searching relies on the matching between theoretical and observed spectra, it is not clear how ion intensity and peak number might affect the outcomes of a database search. In this report, we systematically evaluated the attributes of PQD mass spectra, performed intensity optimization, and assessed the benefits of using PQD on the identification of peptides and phosphopeptides from an LTQ. Based on head-to-head comparisons between CID (higher intensity) and PQD (better m/z coverage), peptides identified using PQD generally have Xcorr scores lower than those using CID. Such score differences were considerably diminished by the use of 0.1% m-nitrobenzyl alcohol (m-NBA) in mobile phases. The ion intensities of both CID and PQD were adversely affected by increasing m/z of the precursor, with PQD more sensitive than CID. In addition to negating the 1/3 rule, PQD enhances direct bond cleavage and generates patterns of fragment ions different from those of CID, particularly for peptides with a labile functional group (e.g., phosphopeptides). The higher energy fragmentation pathway of PQD on peptide fragmentation was further compared to those of CID and the quadrupole-type activation in parallel experiments.  相似文献   

19.
This article provides a perspective on collisions of ions with surfaces, including surface-induced dissociation (SID) and reactive ion scattering spectrometry (RISS). The content is organized into sections on surface-induced dissociation of small ions, surface characterization of organic thin films by collision of well-characterized ions into surfaces, the use of SID to probe peptide fragmentation, and the dissociation of large non-covalent complexes by SID. Examples are given from the literature with a focus on experiments from the authors' laboratory. The article is not a comprehensive review but is designed to provide the reader with an overview of the types of results possible by collisions of ions into surfaces.  相似文献   

20.
The photodissociation by 157 nm light of singly- and doubly-charged peptide ions containing C- or N-terminal arginine residues was studied in a linear ion trap mass spectrometer. Singly-charged peptides yielded primarily x- and a-type ions, depending on the location of the arginine residue, along with some related side-chain fragments. These results are consistent with our previous work using a tandem time-of-flight (TOF) instrument with a vacuum matrix-assisted laser desorption/ionization (MALDI) source. Thus, the different internal energies of precursor ions in the two experiments seem to have little effect on their photofragmentation. For doubly-charged peptides, the dominant fragments observed in both photodissociation and collisionally induced dissociation (CID) experiments are b- and y-type ions. Preliminary experiments demonstrating fragmentation of multiply-charged ubiquitin ions by 157 nm photodissociation are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号