首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon nanotubes (CNTs), either single wall carbon nanotubes (SWNTs) or multiwall carbon nanotubes (MWNTs), can improve the thermoelectric properties of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT?:?PSS), but it requires addition of 30-40 wt% CNTs. We report that the figure of merit (ZT) value of PEDOT?:?PSS thin film for thermoelectric property is increased about 10 times by incorporating 2 wt% of graphene. PEDOT?:?PSS thin films containing 1, 2, 3 wt% graphene are prepared by solution spin coating method. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy analyses identified the strong π-π interactions which facilitated the dispersion between graphene and PEDOT?:?PSS. The uniformly distributed graphene increased the interfacial area by 2-10 times as compared with CNT based on the same weight. The power factor and ZT value of PEDOT?:?PSS thin film containing 2 wt% graphene was 11.09 μW mK(-2) and 2.1 × 10(-2), respectively. This enhancement arises from the facilitated carrier transfer between PEDOT?:?PSS and graphene as well as the high electron mobility of graphene (200,000 cm(2) V(-1) s(-1)). Furthermore the porous structure of the thin film decreases the thermal conductivity resulting in a high ZT value, which is higher by 20% than that for a PEDOT?:?PSS thin film containing 35 wt% SWNTs.  相似文献   

2.
The orientation of platelets in micro-meter-thick polymer-clay nanocomposite films was investigated with small-angle neutron scattering (SANS), small-angle X-ray scattering (SAXS), and wide-angle X-ray diffraction (WAXD). The films with various clay contents (15–60% by mass fraction) were prepared by a layer-by-layer approach from polymer-clay solutions that led to the formation of a high degree of orientation in both polymer and clay platelets. Shear-induced orientation of polymer-clay solutions is compared with the orientation of polymer-clay films. SANS, SAXS, and WAXD, with beam configurations in and perpendicular to the spread direction of the film, were used to determine the structure and orientation of platelets. In all films, the clay platelets oriented preferentially in the plane of the film. The observed differences in semidilute solutions, with clay surface normal parallel to the vorticity direction, versus bulk films and with clay surface normal parallel to the shear gradient direction at clay mass fractions of 40 and 60%, were attributed to the collapses of clay platelet during the drying process. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3237–3248, 2003  相似文献   

3.
Inverse opal films with unique optical properties have potential as photonic crystal materials and have stimulated wide interest in recent years. Herein, iridescent hybrid polystyrene/nanoparticle macroporous films have been prepared by using the breath‐figure method. The honeycomb‐patterned thin films were prepared by casting gold nanoparticle‐doped polystyrene solutions in chloroform at high relative humidity. Highly ordered hexagonal arrays of monodisperse pores with an average diameter of 880 nm are obtained. To account for the observed features, a microscopic phase separation of gold nanoparticles is proposed to occur in the breath‐figure formation. That is, individual gold nanoparticles adsorb at the solution/water interface and effectively stabilize condensed water droplets on the solution surface in a hexagonal array. Alternatively, at high nanoparticle concentrations the combination of breath‐figure formation and nanoparticle phase separation leads to hierarchical structures with spherical aggregates under a honeycomb monolayer. The films show large features in both the visible and NIR regions that are attributed to a combination of nanoparticle and ordered‐array absorptions. Organic ligand‐stabilized CdSe/CdS quantum dots or Fe3O4 nanoparticles may be loaded into the honeycomb structure to further modify the films. These results demonstrate new methods for the fabrication and functionalization of inverse opal films with potential applications in photonic and microelectronic materials.  相似文献   

4.
The change in interfacial interaction behavior of epoxy resin nanocomposites with the incorporation of graphene oxide (GO) was explored experimentally and computationally. GO with different weight (wt) loading was incorporated in epoxy resin by a three-way dispersion method. GO formed mechanical interlocking with epoxy resin, thereby resulting in a remarkable enhancement in mechanical and thermo-mechanical properties of GO-epoxy nanocomposite. In 0.3 wt% GO-epoxy nanocomposites, improvement of 26.7% in flexural strength and 39.2% in flexural modulus was reported. Using dynamic mechanical analysis (DMA), thermomechanical analysis (TMA) and differential scanning calorimetry (DSC), glass transition temperature (Tg) of 182.7°C and maximum thermal stability was reported for 0.3% GO-epoxy nanocomposite. The effect of GO on cross-linking in GO-epoxy nanocomposite was analyzed by DSC and Raman spectroscopy. The X-ray photoelectron spectroscopy (XPS) study was utilized to determine the interfacial interaction, and further was verified by density functional theory (DFT). By experimental and computational study, H-bonding was observed to improve interfacial interaction in GO-epoxy nanocomposite.  相似文献   

5.
宋义虎  郑强 《高分子科学》2013,31(3):399-406
Colloidal suspensions of glutaraldehyde (GA) crosslinked or grafted graphene oxide (GO) sheets were fabricated by simply tailoring the feed sequence. The different structures were confirmed by Fourier transform infrared spectra and X-ray diffraction. As demonstration of the utilities, the different colloidal suspensions were used to prepare free-standing papers by flow-directed filtration and poly(vinyl alcohol) (PVA)-based nanocomposite films by casting. Free-standing papers from GA crosslinked GO sheets exhibited better mechanical properties than unmodified GO paper, while nanocomposite films from GA grafted GO exhibit higher tensile strength and Young’s modulus.  相似文献   

6.
Polyimide(PI)/graphene oxide(GO) nanocomposite films were prepared by chemical cross-linking using small amounts of divalent Mg ions. The PI/GO nanocomposites showed enhanced tensile properties compared to pristine PI due to the presence of exfoliated GO in the PI matrix as well as crosslinking between poly(amic acid) (PAA), which is a precursor of PI, and GO by Mg ions. The hydrogen bonds between PAA and GO suppressed the phase separation between PI and GO, and small amounts of Mg ions can bond between the oxygen functional groups and carboxylate groups of GO and PAA.  相似文献   

7.
The samples of polyvinylidene fluoride/trifluoroethylene with different amount of graphene oxide dopant 5, 10, 15, 20 and 25% were fabricated and their phase situation were estimated. Moreover the para–ferroelectric phase transition was studied using the dielectric spectroscopy technique. The results of dielectric measurements allowed to perform Cole–Cole analysis and to estimate the activation energy of the films. On the basis of these results the influence of graphene oxide dopant on structure and properties of polyvinylidene fluoride/trifluoroethylene was discussed.  相似文献   

8.
Recyclable and transparent nanocomposite films based on bacterial cellulose (BC) and hemiaminal dynamic covalent network polymer (HDCN) have been synthesized by in situ polymerization of 4,4′-diaminodiphenyl ether (ODA) with paraformaldehyde. Transparency and structural and mechanical properties of such nanocomposite films are investigated. It was found that BC/HDCN nanocomposite films exhibits a high optical transparency (86 % at 550 nm). Scanning electron microscopy reveals excellent compatibility of the reinforcement of BC nanofibers and HDCN matrix, which leads to the improvement of 20 and 200 % in tensile strength and storage modulus, respectively, as compared to neat HDCN films. BC hydrogels are readily recoverable from nanocomposite films by the sulphuric acid treatment and ODA monomer is deposited and also recycled.  相似文献   

9.
A comparison between structure and mechanical properties of dc sputtered C–Ni and C–Ti nanocomposite thin films has been made in the growth temperature range of 25–800 °C. C–Ni films undergo morphological and phase change at 400 °C deposition temperature, while the C–Ti films possess the same phase state and morphological character in the whole range of deposition temperatures. Despite the structural differences the dependence of hardness (H) and elastic modulus (E) on the deposition temperature shows very similar behavior. The same character of the hardness and modulus curves is mostly influenced by the structure and the morphology of the carbon matrix. The difference in absolute value between the H and E curves of C–Ni and C–Ti could be related to the C-metal bonds, chemical stability and mechanical properties of the corresponding carbide phase.  相似文献   

10.
The crystal growth and morphology in 150‐nm‐thick PET nanocomposite thin films with alumina (Al2O3) nanoparticle fillers (38 nm size) were investigated for nanoparticle loadings from 0 to 5 wt %. Transmission electron microscopy of the films showed that at 1 wt % Al2O3, the nanoparticles were well dispersed in the film and the average size was close to the reported 38 nm. Above 2 wt % Al2O3, the nanoparticles started to agglomerate. The crystal growth and morphological evolution in the PET nanocomposite films kept at an isothermal temperature of 217 °C were monitored as a function of the holding time using in situ atomic force microscopy. It was found that the crystal nucleation and growth of PET was strongly dependent on the dispersed particles in the films. At 1 wt % Al2O3, the overall crystal growth rate of PET lamellae was slower than that of the PET homopolymer films. Above 2 wt % Al2O3, the crystal growth rate increased with nanoparticle loading because of heterogeneous nucleation. In addition, in these PET nanocomposite thin films, the Al2O3 nanoparticles induced preferentially oriented edge‐on lamellae with respect to the surface, which was not the case in unfilled PET as determined by grazing‐incidence X‐ray diffraction. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 747–757, 2007  相似文献   

11.
The combination of polymers with nanomaterials displays novel and often enhanced properties compared to the traditional materials. They can open up possibilities for new technological applications. The magnetic polymer gel represents a new type of composites consisting of small magnetic particles, usually from the nanometer range to the micron range, dispersed in a highly elastic polymeric gel matrix. Combination of magnetic and elastic properties leads to a number of striking phenomena that are exhibited in response to impressed magnetic fields. Giant deformational effects, high elasticity, anisotropic properties, temporary reinforcement and quick response to magnetic field open new opportunities for using such materials for various applications.  相似文献   

12.
A facile approach of making scalable nanocomposite and electro-patterned films using graphene oxide (GO) and poly(N-vinylcarbazole) (PVK) is reported. The method involves the layering of polystyrene colloidal templates, electrodeposition of the composite film on template array, and finally removal of the sacrificial templates to reveal the patterned GO-PVK arrays.  相似文献   

13.
This work presents the effect of driven nickel nanoparticles (NiNPs) towards the surface of (PS-PANI)/NiNPs nanocomposite upon the application of a uniform magnetic field. The purpose is to obtain distinguishable optoelectronic and electrical properties. This process increases the surface roughness and its reactivity, and enables the tuning of the optical and electrical properties. Based on the results from X-ray photoelectron and Fourier-transform infrared spectroscopies, the magnetically-driven NiNPs to the surface are oxidized, forming NiONPs and NiOHNPs. This oxidation effect transforms the surface from a hydrophilic to a hydrophobic state. In addition, the optical bandgap energy decreases from 4.04 to 3.77 eV, and the electrical conductivity increases from 12.77 μS/cm to 57.80 μS/cm and 77.52 μS/cm, for 50 and 100 mT magnetic fields, respectively, which is attributed to the well-dispersed magnetic nanoparticles in the PS-PANI polymer matrix, resulting in a high homogeneous nanocomposite film.  相似文献   

14.
A new method of synthesis of TiO2 nanoparticles as well as preparation of the organic–inorganic hybrid nanocomposite films of (hydroxypropyl)cellulose (HPC)/TiO2 is presented. At the first stage, the oxotitanium hydrogel phase was obtained by the mineralization of (tetra‐isopropyl)orthotitanate (TIPT) modified by the methacrylic acid (MAA) in 15 wt% solution of H2O2 at room temperature and subsequent annealing at the temperature of 85°C. The crystallization of the nanoparticles of TiO2 was conducted at the oxotitanium hydrogel phase at temperatures around 120°C in the closed vessel. Nanocomposite hybrid films were prepared by the casting method from a solution of HPC and TiO2 nanoparticles in the water. The films of nanocomposite with 10 µm thickness are transparent to visible light and have a lower glass transition temperature compared with HPC in the bulk. This shift of the glass transition is interpreted in terms of packing density of HPC in the interface of HPC nanocomposite with TiO2. The X‐ray diffraction pattern of the nanocomposite film suggests a lower amount of mesomorphic phase of HPC in the composite compared with HPC in the bulk. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
A convenient and industrially scalable method for synthesis of homogeneous nanocomposite films comprising poly(styrene‐stat‐butyl acrylate) and nanodimensional graphene oxide (GO) or reduced GO (rGO) is presented. Importantly, the nanocomposite latex undergoes film formation at ambient temperature, thus alleviating any need for high temperature or high pressure methods such as compression molding. The method entails synthesis of an aqueous nanocomposite latex via miniemulsion copolymerization relying on nanodimensional GO sheets as sole surfactant, followed by ambient temperature film formation resulting in homogeneous film. For comparison, a similar latex obtained by physical mixing of a polymer latex with an aqueous GO dispersion results in severe phase separation, illustrating that the miniemulsion approach using GO as surfactant is key to obtaining homogeneous nanocomposite films. Finally, it is demonstrated that the GO sheets can be readily reduced to rGO in situ by heat treatment of the film. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2289–2297  相似文献   

16.
17.
Three Re(I) complexes (3, 5, and 7) (Re(CO)3Cl(L)2) and three new Pt(II) complexes (4, 6, and 8) ([Pt(P(Et)3)2(L)2](OTf)2), where L = pyridine, 1 (4-Py-EDOT) or 2 (4-Py-bithiophene), were prepared and characterized. The solid-state structures of 4 and 5 were determined by X-ray crystallography. Electrochromic polymeric films of 2, 5, and 6 were prepared and characterized.  相似文献   

18.
Novel ternary nanocomposites films of Polypyrrole/copper/graphene oxide (PPy/Cu/GO) showed enhanced optical and electronic properties. In this study, PPy/Cu/GO films were synthesized with different GO load (0.0, 0.4, 0.6, and 0.8 wt%) using electrochemical deposition technique. The structural, optical and electrical properties of the composites were evaluated using X-Ray Diffraction (XRD) spectroscopy, UV–visible spectroscopy, Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDX), and four-point probe methods. XRD results reveal that the GO was completely intercalated and dispersed uniformly in the nanocomposites. The results also revealed that the nanocomposite films are crystalline in nature, with distinct peaks corresponding to indexed miller indices. UV-visible analysis revealed that all of the nanocomposites showed good UV absorbance which was significant in the UV–Vis region of ≈450 nm. The energy band gap decreased with increase in GO load and was found within 3.46 to 2.25 eV, across the range of GO load which fall within the range of energy band gap for photovoltaic applications. The SEM results revealed that the nanocomposite films showed unevenly shaped structures with porous surface which increases with increasing GO loading, while the EDX result revealed the presence of carbon, oxygen nitrogen and copper as fundamental elements deposited. The nanocomposites' four-point probe analysis revealed slight increase in conductivity with low GO content. The incorporation of Cu and GO nanoparticles in PPy matrix provides a better balance and thus improved the photovoltaic properties of PPy/Cu/GO making them suitable for photovoltaic applications.  相似文献   

19.
In this work, a novel method to fabricate polymer spheres encapsulated in polymer films by breaking embedded electrospun fibers (BEEF) was developed. Polymer fibers were first prepared by electrospinning and embedded in other polymer films using a three‐layer deposition method. After thermal annealing, the electrospun fibers transform into individual spheres with regular spacing and sizes. Poly(methyl methacrylate) (PMMA) and polystyrene (PS) are both used as the fiber or film materials. The transformation process can be observed in‐situ by optical microscope (OM) and is similar to the Plateau–Rayleigh instability. The growth rates of the surface undulation of the fibers are calculated, and higher growth rates are observed at higher annealing temperatures. The sizes of the encapsulated polymer spheres agree well with the theoretical predictions. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2463–2470  相似文献   

20.
Covalent surface functionalization of synthesized ZnO nanoparticles (NP)s with ethylenediaminetetraacetic acid (EDTA) was successfully carried out. Modified ZnO‐EDTA NPs as a viable and inexpensive filler were incorporated into poly(vinyl chloride) PVC matrix after their chemical modification to investigate the agglomeration behavior. All prepared materials including modified NPs and PVC/ZnO‐EDTA nanocomposites (NC)s were analyzed by Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, thermogravimetric analysis, X‐ray diffraction, field emission scanning electron microscopy and transmission electron microscopy. Fabricated PVC/ZnO‐EDTA NCs were reported to have high transparency and improved mechanical properties compared with PVC. Modified ZnO and the fabricated NCs were shown to exhibit excellent antibacterial activity against two bacteria species: Escherichia coli and Staphylococcus aureus. The obtained NCs could be considered as self‐extinguishing materials on the basis of the LOI values. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号