首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultradispersed metal oxide nanoparticles have applications as heterogeneous catalysts for organic reactions. Their catalytic activity depends primarily on their surface area, which in turn, is dictated by their size, colloidal concentration and stability. This work presents a microemulsion approach for in situ preparation of ultradispersed copper oxide nanoparticles and discusses the effect of different microemulsion variables on their stability and highest possible time-invariant colloidal concentration (nanoparticle uptake). In addition, a model which describes the effect of the relevant variables on the nanoparticle uptake is evaluated. The preparation technique involved solubilizing CuCl(2) in single microemulsions followed by direct addition of NaOH. Upon addition of NaOH, copper hydroxide nanoparticles stabilized in the water pools formed in addition to a bulk copper hydroxide precipitate at the bottom. The copper hydroxide nanoparticles transformed with time into copper oxide. After reaching a time-independent concentration, mixing had limited effect on the nanoparticle uptake and particle size. Particle size increased with increasing the surfactant concentration, concentration of the precursor salt, and water to surfactant mol ratio; while the nanoparticle uptake increased linearly with the surfactant concentration, displayed an optimum with R and a power function with the concentration of the precursor salt. Surface areas per gram of nanoparticles were much higher than literature values. Even though lower area per gram of nanoparticles was obtained at higher uptake, higher surface area per unit volume of the reverse micellar system was attained. A model based on water uptake by Wisor type II microemulsions, and previously used to describe iron oxide nanoparticle uptake by the same microemulsions, agreed well with the experimental results.  相似文献   

2.
A novel method of preparing AgCl nanoparticles by mixing AgCl powder and a microemulsion consisting of dioctyldimethylammonium chloride/n-decanol/water/isooctane is introduced. This new method was discovered during the preparation of AgCl nanoparticles in single microemulsions by direct reaction with the dioctyldimethylammonium chloride surfactant counterion. The effect of the following variables on the concentration of the colloidal AgCl nanoparticles (the nanoparticle uptake) and the particle size were studied: (1) operating variables, including mixing and temperature; and (2) microemulsion variables, including surfactant and cosurfactant concentration, and water to surfactant mole ratio. Manipulating these variables provides an insight into the role of the surfactant surface layer rigidity on the phenomenon. The results were explained by the effect of these variables on reaction rates and the colloidal nanoparticle stability. Mixing had a significant effect on the nanoparticle uptake. At 300 rpm an equilibrium AgCl nanoparticle uptake was achieved in about 1 h, while without mixing only 5% of the equilibrium value was reached even after 24 h. An optimum temperature was found for which a maximum nanoparticle uptake was obtained. At higher temperatures, the nanoparticle uptake declined. The nanoparticle uptake increased linearly with the surfactant concentration, and the particle size increased as well. A monotonic decrease in the nanoparticle uptake accompanied by an increase in the particle size was observed when increasing n-decanol concentration or the water to surfactant mole ratio.  相似文献   

3.
Microemulsions are suitable reaction media to prepare a wide variety of nanoparticles and provide control over their sizes. However, as typically used, microemulsions limit rates of rapid reactions and suffer from low reactant solubilization capacity. This work presents a new application of a novel approach aimed at minimizing these limitations. This approach, which was previously applied for AgCl nanoparticle preparation, involves solubilization of a bulk silver halide in the form of higher halides, by means of reaction with the surfactant counterion of a microemulsion, and the reprecipitation of silver halide nanoparticles in the water pools of individual reverse micelles. CTAB microemulsions were employed because they possess a reactive counterion and are known to have a high solubilization capacity for ionic reactants. Despite their high solubilization capacity, CTAB microemulsions achieved lower nanoparticles uptake (molar concentration of the colloidal nanoparticles) for the same surfactant concentration when compared to our previous study. The effect of the following variables on the nanoparticle uptake and the particle size was investigated: (1) operation variables, including rate of mixing and temperature; and (2) microemulsion variables, including CTAB and n-butanol concentrations, and water-to-surfactant mole ratio, R. These variables provide a comprehensive test to the proposed mechanism and expose the role of the surfactant layer rigidity. The nanoparticle uptake increased as the rate of mixing, temperature, and CTAB concentration increased, and decreased as n-butanol concentration and R increased. High n-butanol concentration and R values reduced the effective surfactant concentration and contributed to less surfactant layer rigidity and to particle aggregation.  相似文献   

4.
Water-in-oil (w/o) microemulsions are very appealing reaction media due to their ability to provide huge surface of contact between water-soluble and oil-soluble reactants. Their application as reaction media, including the preparation of nanoparticles, is, however, limited to water soluble precursors. In this study, we present a first step scheme in a two-step process for the preparation of metal oxide nanoparticles starting from their water-insoluble metal oxide bulk powder. This step involves solubilizing the metal oxide in the water pools of the microemulsion with the aid of a solubilizing agent. The variables affecting the solubilizing capacity of iron and copper oxides, as examples of important metal oxides, in single HCl-containing AOT/water/isooctane microemulsions were investigated. The effect of the following variables on the solubilization capacity is reported, namely, mixing time, surfactant concentration, water to surfactant mole ratio (R), and the nominal concentration of HCl in the water pool. At 300-rpm, time-invariant concentration of the metals in the microemulsions was achieved in about 6 hours. These values were quoted as the solubilization capacity of the metal oxide at the corresponding conditions. Solubilization capacity increased linearly with the surfactant concentration and R, and portrait a power function with the nominal concentration of HCl in the water pool. A mathematical model previously derived to describe nanoparticle uptake by single microemulsion accurately accounted for the effect of the aforementioned variables on the solubilization capacity.  相似文献   

5.
The phase behavior and structure of aqueous-in-n-heptane microemulsions, stabilized by surfactant mixtures of di-n-didodecyldimethylammonium bromide, DDAB, and Brij(R)35 were studied by small angle (neutron or X-ray) scattering techniques. The aqueous nanodroplets contain either a precursor reactive salt or a precipitating agent, so that simple mixing induces nanoparticle formation. These formulated microemulsions display good phase stability against added polar additives such as monovalent, divalent, trivalent metal ions, ammonia solution, tetrabutylammonium hydroxide, and their mixtures. Nanoparticle formation was demonstrated via precipitation of metal oxides inside the water nanodroplets, affording control over the resulting particle size. Nanoparticle characteristic size (XRD- and HR-TEM derived sizes) and specific surface areas (S(BET) (m(2)g(-1))) for iron oxide and CeO(2) prepared in these mixed microemulsions, are compared with those stabilized by single surfactants DDAB and Pure AOT.  相似文献   

6.
Silver bromide precipitate of nanoparticles was prepared by addition of silver nitrate aqueous solution to a single microemulsion system consisting of dioctyldimethylammonium bromide, n-decanol, and water in isooctane. The silver ion reacted readily with the surfactant counterion, bromide, to form the precipitate of nanoparticles, which was stabilized in the water pools. The use of the surfactant counterion as a reactant is a new approach to nanoparticle preparation in microemulsions. It is characterized by high reactivity and less dependency on the intermicellar exchange of solubilizate. The effects of the surfactant and the cosurfactant concentrations, the amount of silver nitrate, and the water to surfactant mole ratio, R, were evaluated. Increasing the surfactant concentration at fixed R and amount of silver nitrate enhanced the role of intermicellar nucleation and resulted in the formation of larger particles, while increasing the amount of silver nitrate at fixed values of all the other variables enhanced the direct nucleation and resulted in the formation of smaller particles. Particle aggregation and flocculation took place when the concentration of n-decanol or the value of R was increased. Particle aggregation and flocculation were attributed to the decrease in the interaction between the surfactant protective layer and the nanoparticles in the water pools.  相似文献   

7.
The paper is focused on the formation and redispersion of monodisperse BaSO4 nanoparticles in polyelectrolyte-modified microemulsions. It is shown that a cationic polyelectrolyte of low molar mass, e.g. poly(diallyldimethylammonium chloride) (PDADMAC), can be incorporated into the individual inverse microemulsion droplets (L2 phase) consisting of heptanol, water, and an amphoteric surfactant with a sulfobetaine head group. These PDADMAC-filled microemulsion droplets can be successfully used as a template phase for the nanoparticle formation. The monodisperse BaSO4 nanoparticles are produced by a simple mixing procedure and can be redispersed after solvent evaporation without a change in particle dimensions. Dynamic and electrophoretical light scattering in combination with sedimentation experiments in the analytical ultracentrifuge of the redispersed powder show polyelectrolyte-stabilized nanoparticles with diameters of about 6 nm. The polyelectrolyte shows a “size control effect”, which can be explained by the polyelectrolyte–surfactant interactions in relation to the polyelectrolyte–nanoparticle interactions during the particle growth, solvent evaporation and redispersion process. However, the approach used here opens a way to produce different types of polyelectrolyte-stabilized nanoparticles (including rare metals, semiconductors, carbonates or oxides) of very small dimensions.  相似文献   

8.
讨论了测定聚合氯化铁中OH/Fe物质的量比的几种方法,确定用过量碱沉淀法测定聚合氯化铁中的OH/Fe物质量比;同时研究了影响测定的各种因素,找出了最佳的测定条件.通过对合成试样和未知试样的测定,结果表明方法无系统误差存在,结果准确、可靠.  相似文献   

9.
微波法合成纳米金胶体颗粒的调控研究   总被引:7,自引:0,他引:7  
用微波法制备高分子聚合物稳定的纳米金胶体颗粒, 制得的金纳米颗粒的平均粒径在5~120 nm之间. 考察了醇还原剂以及碱对金颗粒形成的影响, 使用透射电子显微镜、紫外可见分光光度计进行表征. 结果表明, 微波法制备的金胶体颗粒具有粒径小、分散性好的特点. 金颗粒的尺寸和形状随醇还原剂的种类及碱(NaOH)用量的不同而有明显的变化. 紫外可见吸收光谱表明, 在反应物中加入碱的体系, 金颗粒的形成速度明显加快, 且利于圆球形金颗粒的形成.  相似文献   

10.
A simple, easy approach to the synthesis of semiconductor ZnS nanorods and nanoparticles exhibiting versatile morphology-formation ability is reported. Water-insoluble zinc sulfide nanocrystals were synthesized in ternary water-in-oil (w/o) microemulsion systems stabilized by either nonionic or, in contrast, cationic surfactant. Products were visualized by transmission electron microscopy (TEM) and identified by energy-dispersive X-ray spectroscopy (EDAX); electron diffraction (ED) was also performed for individual nanorods. With varying molar ratios of water to surfactant (omega0) in solution, hence changing droplet sizes of water pool of microemulsions consequently, several morphologies with different size spans were encountered in the formation of ZnS, such as nanorods and spherical or ellipsoidal particles. Meanwhile, product morphology was also found to be sensitive to the absolute reactant concentration and concentration ratio of [Zn2+] to [S2-], the incubation time, and the ambient temperature. A schematic mechanism for the formation of ZnS nanocrystals and their morphological diversity is described. It is feasible to extend this method to the synthesis of one-dimensional nanocrystals of other semiconductors, given suitable formulae of microemulsions and other appropriate reaction conditions.  相似文献   

11.
This article demonstrates that bicontinuous microemulsions are optimal templates for high yield production of metal nanoparticles. We have verified this for a variety of microemulsion systems having AOT (sodium bis (2-ethyhexyl) sulphosuccinate) or a fluorocarbon (perfluoro (4-methyl-3,6-dioxaoctane)sulphonate) as surfactant mixed with water and oils like n-heptane or n-dodecane. Several types of metal nanoparticles, including platinum, gold and iron, were produced in these microemulsions having a size range spanning 1.8-17 nm with a very narrow size distribution of ±1 nm. Remarkably high mass concentrations up to 3% were reached. Size and concentration of the nanoparticles could be varied with the stoichiometries of the reagents that constituted them. The optimization towards high yield while maintaining low size polydispersity is due to the decoupling of the time scales for the precipitation reaction and for coarsening. In actual fact, coalescence is essentially prevented by the immobilization of nanoparticles within the bicontinuous microemulsion structure.  相似文献   

12.
We address controlled CdS nanoparticle formation by tuning experimental synthesis conditions. To this end, a bivariate population balance equation (PBE) model has been developed based on time scale analysis, to explain the mechanism of nanoparticle formation in self-assembled templates. It addresses the process of mixing two water-in-oil (w/o) microemulsions, each containing a pre-dissolved reactant in the microemulsion drops. Brownian collision and coalescence of two water drops of nanometer size results in mixing and exchange of reactant molecules, leading to chemical reaction. The water insoluble reaction product nucleates to form a nanoparticle in an individual drop, which subsequently grows internally by consuming the excess product and by coalescence-exchange with other drops. Finite rates of nucleation and coalescence-exchange are accounted for in the PBE, while the rates of reaction and internal growth of nanoparticles are found to be instantaneous. Experimentally proven binomial redistribution of reactant and product molecules upon drop coalescence is implemented in the present work. This results in a very good prediction of experimental data of the mean aggregate number (MAN) and hence size of CdS nanoparticles. Both our model and Monte Carlo (MC) simulation quantitatively capture the reported variation of MAN with molar excess of Cd2+ concentration and microemulsion drop size. Our results together with previous experimental data establish that usage of stoichiometrically five times or more of excess Cd2+ concentration can cause surface adsorption and desirable enhanced emission intensity of CdS nanoparticles, without altering particle size. We also propose a simplified and computationally efficient univariate PBE model. The univariate model gives very fast (in minutes) and accurate estimates (for low reactant concentrations) of the number and mean size of CdS nanoparticles. Time-scale analysis offers a good a priori choice of the appropriate model based on range of reactant concentrations.  相似文献   

13.
This paper describes a facile approach to the site-specific growth of single-walled carbon nanotubes (SWNTs) on silicon surfaces by chemical vapor deposition (CVD). The approach is based on the use of a surfactant as a resist to define patterns of silicon oxide nanodomains onto which nanoparticles of iron hydroxide (Fe(OH)3), 1-5 nm diameter, could be deposited. In base growth mode, the SWNTs can grow from the oxide nanodomains. By controlling the location of oxide nanodomains, site-specific growth could be obtained. The iron hydroxide nanoparticles were prepared by hydrolysis of ferric chloride (FeCl3). Patterned hydroxylated silicon oxide nanodomains were created by scanning probe oxidation (SPO) of silicon substrates modified with aminopropyltrimethoxysilane (APTMS, H2N(CH2)3Si(OCH3)3). Due to electrostatic interaction, Fe(OH)3 nanoparticles can be selectively deposited on hydroxyl groups present on silicon oxide nanodomains. To inhibit the assembly of the nanoparticles on a APTMS-coated silicon surface, sodium dodecyl sulfate (SDS) was introduced, which restricted deposition to the hydroxylated nanodomains. A model mechanism for the selective deposition mechanism has been proposed. It was possible to convert the patterned Fe(OH)3 nanoparticles to iron oxide, which served as a catalyst for the site-specific growth of SWNTs. Raman spectroscopy and AFM were used to characterize the nanotubes on the Si substrate. This will offer the possibility for future integration with conventional microelectronics as well as the development of novel devices.  相似文献   

14.
In this work, the formation of water-in-oil (w/o) microemulsions with high aqueous phase uptake in a nonionic surfactant system is investigated as potential media for the synthesis of Mn-Zn ferrite nanoparticles. A comprehensive study based on the phase behavior of systems containing precursor salts, on one hand, and precipitating agent, on the other hand, was carried out to identify key regions on (a) pseudoternary phase diagrams at constant temperature (50 °C), and (b) pseudobinary phase diagrams at constant surfactant (S):oil(O) weight ratio (S:O) as a function of temperature. The internal structure and dynamics of microemulsions were studied systematically by conductivity and self-diffusion coefficient determinations (FT PGSE (1)H NMR). It was found that nonpercolated w/o microemulsions could be obtained by appropriate tuning of composition variables and temperature, with aqueous phase concentrations as high as 36 wt % for precursor salts and 25 wt % for precipitating agent systems. Three compositions with three different dynamic behaviors (nonpercolated and percolated w/o, as well as bicontinuous microemulsions) were selected for the synthesis of Mn-Zn ferrites, resulting in nanoparticles with different characteristics. Spinel structure and superparamagnetic behavior were obtained. This study sets firm basis for a systematic study of Mn-Zn ferrite nanoparticle synthesis via different scenarios of microemulsion dynamics, which will contribute to a better understanding on the relationship of the characteristics of the obtained materials with the properties of the reaction media.  相似文献   

15.
ZnS nanoparticles were synthesized in four component "water in oil" microemulsions formed by a cationic surfactant (cetyltrimethylammonium bromide, CTAB), a cosurfactant (pentanol or butanol), n-hexane and water. The effect of various parameters (nature of cosurfactant, water/surfactant W(0), and alcohol/surfactant P(0)) on the formation and stability of ZnS nanoparticles was investigated thoroughly. UV-Vis spectroscopy was employed to directly follow the formation of ZnS systems in the microemulsions. Thus, particle size was estimated from the position of the first excitonic transition by employing an approximate finite-depth equation and an empirical correlation, giving average diameters in the ranges 2.3-2.5 and 3.0-3.5nm, respectively. Stable ZnS nanoparticles were obtained by employing low water and high cosurfactant amounts. This suggests that at high concentration the cosurfactant molecules act as capping agents on the surface of the inverse micelles, while low water amounts are needful to obtain water droplets with a radius close to that of the interfacial film spontaneous curvature. HRTEM analysis showed that the samples are formed by a few crystalline ZnS nanoparticles of spherical shape, embedded in and amorphous organic matrix, with a coherent scattering domain between 2 and 4nm.  相似文献   

16.
We report a novel route for the preparation of well-defined colloidal dispersions of magnetic nanoparticles stabilized by steric repulsion in organic solvents. The usual methods standardly lead to the surfaction of multiparticle aggregates, incompatible with our long-term aim of studying and modeling the influence of magnetic dipolar interactions in colloidal dispersions which are free of aggregates, all other interactions being perfectly defined. A new and reproducible method based on a surfactant-mediated liquid-liquid phase transfer of individually dispersed gamma-Fe(2)O(3) nanoparticles from an aqueous colloidal dispersion to an organic phase is developed. The choice of the reagent and the preparation techniques is discussed. Among several solvent/surfactant pairs, the cyclohexane/dimethyldidodecylammonium bromide (DDAB) system is found to fulfill the colloidal stability criterion: aggregation does not appear, even upon aging. A complete transfer of isolated particles is observed above a threshold in DDAB concentration. The nanoparticle surface is then fully covered with adsorbed DDAB molecules, each surfactant head occupying a surface of 0.57+/-0.05 nm(2). The volume fraction of the cyclohexane-based organosols is easily tunable up to a volume fraction of 12% by modifying the volume ratio of the organic and of the aqueous phases during the liquid-liquid phase transfer.  相似文献   

17.
Injection of nanoscale zero-valent iron (NZVI) is potentially a promising technology for remediation of contaminated groundwaters. However, the efficiency of this process is significantly hindered by the rapid aggregation of the iron nanoparticles. The aim of this study was to enhance the colloidal stability of the nanoparticles through the addition of the "green" polymer guar gum. We evaluated the properties of guar gum and its influence on the surface properties, particle size, aggregation, and sedimentation of iron nanoparticles. Commercial iron nanoparticles were dispersed in guar gum solutions, and their aggregation and sedimentation behaviors were compared to those of bare iron nanoparticles and commercial nanoparticles modified with a biodegradable polymer (polyaspartate). High performance size exclusion chromatography, charge titration, and viscosity assessment showed that guar gum is a high molecular weight polymer which is nearly neutrally charged, rendering it suitable for steric stabilization of the iron nanoparticles. Electrophoretic mobility measurements demonstrated the ability of guar gum to adsorb on the nanoparticles, forming a slightly negatively charged layer. Dynamic light scattering experiments were conducted to estimate the particle size of the different nanoparticle suspensions and to determine the aggregation behavior at different ionic strengths. Guar gum effectively reduced the hydrodynamic radius of the bare nanoparticles from 500 nm to less than 200 nm and prevented aggregation of the nanoparticles even at very high salt concentrations (0.5 M NaCl and 3 mM CaCl(2)). Sedimentation profiles of the different nanoparticle suspensions confirmed the improved stability of the iron nanoparticles in the presence of guar gum. The results strongly suggest that guar gum can be used to effectively deliver stabilized zero-valent iron nanoparticles for remediation of contaminated groundwater aquifers.  相似文献   

18.
The effect of different mixing protocols on the charged nature and size distribution of the aqueous complexes of hyperbranched poly(ethylene imine) (PEI) and sodium dodecyl sulfate (SDS) was investigated by electrophoretic mobility and dynamic light scattering measurements at different pH values, polyelectrolyte concentrations, and ionic strengths. It was found that at large excess of the surfactant a colloidal dispersion of individual PEI/SDS nanoparticles forms via an extremely rapid mixing of the components by means of a stop-flow apparatus. However, the application of a less efficient mixing method under the same experimental conditions might result in large clusters of the individual PEI/SDS particles as well as in a more extended precipitation regime compared with the results of stop-flow mixing protocol. The study revealed that the larger the charge density and concentration of the PEI, the more pronounced the effect of mixing becomes. It can be concluded that an efficient way to avoid precipitation in the solutions of oppositely charged polyelectrolytes and surfactants might be provided by extending the range of kinetically stable colloidal dispersion of polyelectrolyte/surfactant nanoparticles via the application of appropriate mixing protocols.  相似文献   

19.
Following a thermal reduction method, platinum nanoparticles were synthesized and stabilized by polyvinylpyrrolidone. The colloidal platinum nanoparticles were stable for more than 3 months. The micrograph analysis unveiled that the colloidal platinum nanoparticles were well dispersed with an average size of 2.53 nm. The sol–gel‐based inverse micelle strategy was applied to synthesize mesoporous iron oxide material. The colloidal platinum nanoparticles were deposited on mesoporous iron oxide through the capillary inclusion method. The small‐angle X‐ray scattering analysis indicated that the dimension of platinum nanoparticles deposited on mesoporous iron oxide (Pt‐Fe2O3) was 2.64 nm. X‐ray photoelectron spectroscopy (XPS) data showed that the binding energy on Pt‐Fe2O3 surface decreased owing to mesoporous support–nanoparticle interaction. Both colloidal and deposited platinum nanocatalysts improved the degradation of methyl orange under reduction conditions. The activation energy on the deposited platinum nanocatalyst interface (2.66 kJ mol?1) was significantly lowered compared with the one on the colloidal platinum nanocatalyst interface (40.63 ± 0.53 kJ mol?1).  相似文献   

20.
Mechanisms of the formation and stabilization of gold nanoparticles in reverse micelles of micro-emulsions based on Triton X-100 (TX-100) and Aerosol OT (AOT) are studied. The instability of AOT-based microemulsions is shown to be caused by the oxidative degradation of gold nanoparticles in micelle water pools. Methods are proposed for the stabilization of these microemulsions. It is revealed that the mean size of gold nanoparticles synthesized in TX-100 reverse micelles in the presence of sodium sulfite is markedly smaller than that of particles prepared in AOT reverse micelles. This is explained by the fact that gold clusters are formed in the micelle shell rather than in the water pool. In the shell, the clusters are stabilized by oxyethylene groups of TX-100 molecules.__________Translated from Kolloidnyi Zhurnal, Vol. 67, No. 4, 2005, pp. 534–540.Original Russian Text Copyright © 2005 by Spirin, Brichkin, Razumov.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号