首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Phase-sensitive nuclear Overhauser enhancement spectroscopy (NOESY) experiments, (3)J couplings and computational molecular modeling (MM2* and MMFF force fields) were employed to examine the conformational properties of verrucarin A in chloroform solutions. The MMFF force field calculations resulted in a family of 12 low-energy structures along with their populations, the latter being determined by the NMR analysis of molecular flexibility in solution(NAMFIS) deconvolution analysis. The concluded model was capable of reproducing successfully the experimental NOESY cross-peak volumes and the proton-coupling constants. Among the 12 conformers, the one which was similar to the structure of verrucarin A in the solid state was the predominant accounting for 75% of the total relative population, although other low-energy conformations contributed to a lesser degree in order to explain the experimental data.  相似文献   

2.
The molecular chaperone HSP90 is an attractive target for chemotherapy because its activity is required for the functional maturation of a number of oncogenes. Among the known inhibitors, radicicol, a 14-member macrolide, stands out as the most potent. A molecular dynamics/minimization of radicicol showed that there were three low energy conformers of the macrocycle. The lowest of these is the bioactive conformation observed in the cocrystal structure of radicicol with HSP90. Corresponding conformational analyses of several known analogues gave a good correlation between the bioactivity and the energy of the bioactive conformer, relative to other conformers. Based on this observation, a number of proposed analogues were analyzed for their propensity to adopt the bioactive conformation prior to synthesis. This led to the identification of pochonin D, a recently isolated secondary metabolite of Pochonia chlamydosporia, as a potential inhibitor of HSP90. Pochonin D was synthesized using polymer-bound reagents and shown to be nearly as potent an HSP90 inhibitor as radicicol.  相似文献   

3.
Differences in agonist responses of the novel estrogen receptor ligands (17alpha,20Z)-(p-methoxyphenyl)vinyl estradiol (1), (17alpha, 20Z)-(o-alpha,alpha,alpha-trifluoromethylphenyl)vinyl estradiol (2), and (17alpha,20Z)-(o-hydroxymethylphenyl)vinyl estradiol (3) led us to investigate their solution conformation. In competitive binding assay studies, we observed that several phenyl-substituted (17alpha, 20E/Z)-(X-phenyl)vinyl estradiols exhibited significant estrogen receptor binding, but with variation (RBA (1) = 20; RBA (2) = 23; RBA (3) = 140 where estradiol RBA = 100) depending on the phenyl substitution pattern. Because the 17alpha-phenylvinyl substituent interacts with the key helix-12 of the ligand binding domain, we considered that differences in the preferred conformation of 1-3 could account for their varying binding affinity. 2D NMR experiments at 500 MHz allowed the complete assignment of the (13)C and (1)H spectra of 1-3. The conformations of these compounds in solution were established by 2D and 1D NOESY spectroscopy. A statistical approach of evaluating contributing conformers of 1-3 from predicted (13)C shifts correlated quite well with the NOE data. The 17alpha substituents of 1 and 2 exist in similar conformational equilibria with some differences in relative populations of conformers. In contrast, the 17alpha substituent of 3 exists in a different conformational equilibrium. The similarity in solution conformations of 1 and 2 suggests they occupy a similar receptor volume, consistent with similar RBA values of 20 and 23. Conversely, the different conformational equilibria of 3 may contribute to the significant binding affinity (RBA = 140) of this ligand.  相似文献   

4.
5.
Inhibition of the 90 kDa heat shock protein (Hsp90) family of molecular chaperones represents a promising new chemotherapeutic approach toward the treatment of several cancers. Previous studies have demonstrated that the natural products, radicicol and geldanamycin, are potent inhibitors of the Hsp90 N-terminal ATP binding site. The cocrystal structures of these molecules bound to Hsp90 have been determined, and through molecular modeling and superimposition of these ligands, hybrids of radicicol and geldanamycin have been designed. A series of macrocylic chimeras of radicicol and geldanamycin and the corresponding seco-agents have been prepared and evaluated for both antiproliferative activity and their ability to induce Hsp90-dependent client protein degradation.  相似文献   

6.
7.
The affinity of geldanamycin (GA) for binding to heat shock protein 90 (HSP90) is 50- to 100-fold weaker than is the affinity of the structurally distinct natural product radicicol. X-ray crystallography shows that although radicicol maintains its free conformation when bound to HSP90, the conformation of GA is dramatically altered from an extended conformation with a trans amide bond to a kinked shape in which the amide group in the ansa ring has the cis configuration. We have performed ab initio quantum chemical calculations to demonstrate that the trans-cis isomeriztion of GA in solution is both kinetically and thermodynamically unfavorable. Thus, we propose that HSP90 catalyzes the isomerization of GA. We identify Ser113, a conserved residue outside the ATP binding pocket, as essential for the isomerization of GA. In support of this model, we show that radicicol binds equally well to both wild-type HSP90 and the Ser113 mutant, whereas the binding of GA to the Ser113 mutant is decreased significantly from its binding to wild-type HSP90. Based on this finding, a mechanism of keto-enol tautomerization of GA catalyzed by HSP90 is proposed. The added requirement of isomerization prior to tight binding may explain the enhanced binding affinity of GA for HSP90 in a cell extract versus in a purified form.  相似文献   

8.
Nicotinic acetylcholine receptors (nAChRs) are membrane-bound, pentameric ligand-gated ion channels associated with a variety of human disorders such as Alzheimer's disease, Parkinson's disease, schizophrenia, and pain. Most known nAChRs contain an unusual eight-membered disulfide-containing cysteinyl-cysteine ring, ox-[Cys-Cys], as does the soluble acetylcholine binding protein (AChBP) found in the snail Lymnaea stagnalis. The cysteinyl-cysteine ring is located in a region implicated in ligand binding, and conformational changes involving this ring may be important for modulation of nAChR function. We have studied the preferred conformations of Ac-ox-[Cys-Cys]-NH2 by NMR in water and computationally by Monte Carlo simulations using the OPLS-AA force field and GB/SA water model. ox-[Cys-Cys] adopts four distinct low-energy conformers at slightly above 0 degrees C in water. Two populations are dependent on the peptide omega2 dihedral angle, with the trans amide favored over the cis amide by a ratio of ca. 60:40. Two ox-[Cys-Cys] conformers with a cis amide bond (C+ and C-) differ from each other primarily by variation of the chi3 dihedral angle, which defines the orientation of the helicity about the S-S bond (+/- 90 degrees ). Two trans amide conformers have the same S-S helicity (chi3 approximately -90 degrees ), but are distinguished by a backbone rotation about phi2 and psi1 (T- and T'-). The ratio of T-/T'-/C+/C- is 47:15:29:9. The orientation of the pendant moieties from the eight-membered ring is more compact for the major trans conformer (T-) than for the extended conformations adopted by T'-, C+, and C-. These conformational preferences are also observed in tetrapeptide and undecapeptide fragments of the human alpha7 subtype of the nAChR that contains the ox-[Cys-Cys] unit. Conformer T- is nearly identical to the conformation seen in the X-ray structure of ox-[Cys(187)-Cys(188)] found in the unliganded AChBP, and is a Type VIII beta-turn.  相似文献   

9.
Kinase targets have been demonstrated to undergo major conformational reorganization upon ligand binding. Such protein conformational plasticity remains a significant challenge in structure-based virtual screening methodology and may be approximated by screening against an ensemble of diverse protein conformations. Maternal embryonic leucine zipper kinase (MELK), a member of serine-threonine kinase family, has been recently found to be involved in the tumerogenic state of glioblastoma, breast, ovarian, and colon cancers. We therefore modeled several conformers of MELK utilizing the available chemogenomic and crystallographic data of homologous kinases. We carried out docking pose prediction and virtual screening enrichment studies with these conformers. The performances of the ensembles were evaluated by their ability to reproduce known inhibitor bioactive conformations and to efficiently recover known active compounds early in the virtual screen when seeded with decoy sets. A few of the individual MELK conformers performed satisfactorily in reproducing the native protein-ligand pharmacophoric interactions up to 50% of the cases. By selecting an ensemble of a few representative conformational states, most of the known inhibitor binding poses could be rationalized. For example, a four conformer ensemble is able to recover 95% of the studied actives, especially with imperfect scoring function(s). The virtual screening enrichment varied considerably among different MELK conformers. Enrichment appears to improve by selection of a proper protein conformation. For example, several holo and unliganded active conformations are better to accommodate diverse chemotypes than ATP-bound conformer. These results prove that using an ensemble of diverse conformations could give a better performance. Applying this approach, we were able to screen a commercially available library of half a million compounds against three conformers to discover three novel inhibitors of MELK, one from each template. Among the three compounds validated via experimental enzyme inhibition assays, one is relatively potent (15; K(d) = 0.37 μM), one moderately active (12; K(d) = 3.2 μM), and one weak but very selective (9; K(d) = 18 μM). These novel hits may be utilized to assist in the development of small molecule therapeutic agents useful in diseases caused by deregulated MELK, and perhaps more importantly, the approach demonstrates the advantages of choosing an appropriate ensemble of a few conformers in pursuing compound potency, selectivity, and novel chemotypes over using single target conformation for structure-based drug design in general.  相似文献   

10.
In this study, we have applied two different spanning protocols for obtaining the molecular conformations of L-tryptophan in aqueous solution, namely a molecular dynamics simulation and a molecular mechanics conformational search with subsequent geometry re-optimization of the stable conformers using a quantum mechanically based method. These spanning protocols represent standard ways of obtaining a set of conformations on which NMR calculations may be performed. The results stemming from the solute-solvent configurations extracted from the MD simulation at 300 K are found to be inferior to the results stemming from the conformations extracted from the MM conformational search in terms of replicating an experimental reference as well as in achieving the correct sequence of the NMR relative chemical shifts of L-tryptophan in aqueous solution. We find this to be due to missing conformations visited during the molecular dynamics run as well as inaccuracies in geometrical parameters generated from the classical molecular dynamics simulations.  相似文献   

11.
A DFT study of N-acetyl-l-leucine-N'-methylamide conformers in the gas phase and in solution was carried out. The theoretical computational analysis revealed 43 different conformations at the B3LYP/6-31G(d) level of theory in the gas phase. In addition, the effects of three solvents (water, acetonitrile, and chloroform) were included in the calculations using the isodensity polarizable continuum model (IPCM) and the Poisson-Boltzmann self-consistent reaction field (PB-SCRF) method. The stability order of the different conformers in solution has been analyzed. The theoretical results were compared with some experimental data (X-ray, IR, and NMR).  相似文献   

12.
The l-alanyl-l-alanine (AA) molecule behaves differently in acidic, neutral, and basic environments. Because of its molecular flexibility and strong interaction with the aqueous environment, its behavior has to be deduced from the NMR spectra indirectly, using statistical methods and comparison with ab initio predictions of geometric and spectral parameters. In this study, chemical shifts and indirect spin-spin coupling constants of the AA cation, anion, and zwitterion were measured and compared to values obtained by density functional computations for various conformers of the dipeptide. The accuracy and sensitivity of the quantum methods to the molecular charge was also tested on the (mono)-alanine molecule. Probable AA conformers could be identified at two-dimensional potential energy surfaces and verified by the comparison of the computed parameters with measured NMR data. The results indicate that, whereas the main-chain peptide conformations of the cationic (AA+) and zwitterionic (AAZW) forms are similar, the anion (AA-) adopts also another, approximately equally populated conformer in the aqueous solution. Additionally, the NH2 group can rotate in the two main chain conformations of the anionic form AA-. According to a vibrational quantum analysis of the two-dimensional energy surfaces, higher-energy conformers might exist for all three charged AA forms but cannot be detected directly by NMR spectroscopy because of their small populations and short lifetimes. In accord with previous studies, the NMR parameters, particularly the indirect nuclear spin-spin coupling constants, often provided an excellent probe of a local conformation. Generalization to peptides and proteins, however, has to take into account the environment, molecular charge, and flexibility of the peptide chain.  相似文献   

13.
Enkephalins are endogenous neuropeptides that have opioid-like activities and compete with morphines for the receptor binding. The binding of these neuropeptides to membrane appears crucial since enkephalins interact with the nerve cell membranes to achieve bioactive conformations that fit onto multiple receptor sites (micro, delta, and kappa). Using NMR spectroscopy, we have determined the solution structure of the small opiate pentapeptide leucine enkephalin in the presence of isotropic phospholipid bicelles: phosphocholine bicelles (DMPC:CHAPS 1:4) and phosphocholine bicelles doped with ganglioside GM1 (DMPC:CHAPS:GM1 1:4:0.3). Bicelles containing GM1 were found to interact strongly with leucine enkephalin, whereas a somewhat weaker interaction was observed in the case of bicelles without GM1. Structure calculation from torsion angles, chemical shifts, and NOE-based distance constraints explored that the peptide could flexibly switch between several mu- and delta-selective conformations in both the bicelles though micro-selective conformations turned out to be geometrically preferred in each bicellar system. A detailed analysis of the structures presented supports the variance over the singly associated conformation of enkephalin in nerve cell membranes.  相似文献   

14.
Intramolecular hydrogen bonding (IHB) interactions and molecular structures of 2-nitrosophenol, nitrosonaphthols, and their quinone-monooxime tautomers were investigated at ab initio and density functional theory (DFT) levels. The geometry optimization of the structures studied was performed without any geometrical restrictions. Possible conformations with different types of the IHB of the tautomers were considered to understand the nature of the HB among these conformers. The effect of solvent on hydrogen bond energies, conformational equilibria, and tautomerism in aqueous solution were studied. Natural bond orbital analysis was performed to study the IHB in the gaseous phase and in aqueous medium. The NMR 1H, 13C, 15N, and 17O chemical shifts in the gaseous phase and in solution for the studied compounds were calculated using the gauge-including atomic orbitals approach implemented in the Gaussian 03 program package. The optimized geometrical parameters and 1H NMR chemical shifts are in good agreement with previous theoretical and experimental data.  相似文献   

15.
The isolation, structure determination, and solution conformation of two conformers of the cyclic heptapeptide phakellistatin 2 (cyclo-[Phe1-cis-Pro2-Ile3-Ile4-cis-Pro5-Tyr6-cis-Pro7]) isolated from the Fijian marine sponge Stylotella aurantium are reported. The conformers can be isolated separately by HPLC and are stable in methanol solution over a period of weeks as determined by NMR. Their NMR spectra and mass spectral fragmentation patterns differ significantly. Their solution conformations were determined by NOE-restrained molecular dynamics calculations and indicated that the two conformers had different folds, hydrogen bonding patterns, and solvent accessible surfaces. These factors may contribute to the independent stability of the two conformers, and may explain the variable biological activity previously reported for phakellistatin 2.  相似文献   

16.
The phi,psi backbone angle distribution of small homopolymeric model peptides is investigated by a joint molecular dynamics (MD) simulation and heteronuclear NMR study. Combining the accuracy of the measured scalar coupling constants and the atomistic detail of the all-atom MD simulations with explicit solvent, the thermal populations of the peptide conformational states are determined with an uncertainty of <5 %. Trialanine samples mainly ( approximately 90%) a poly-l-proline II helix-like structure, some ( approximately 10%) beta extended structure, but no alphaR helical conformations. No significant change in the distribution of conformers is observed with increasing chain length (Ala(3) to Ala(7)). Trivaline samples all three major conformations significantly. Triglycine samples the four corner regions of the Ramachandran space and exists in a slow conformational equilibrium between the cis and trans conformation of peptide bonds. The backbone angle distribution was also studied for the segment Ala3 surrounded by either three or eight amino acids on both N- and C-termini from a sequence derived from the protein hen egg white lysozyme. While the conformational distribution of the central three alanine residues in the 9mer is similar to that for the small peptides Ala(3)-Ala(7), major differences are found for the 19mer, which significantly (30-40%) samples alphaR helical stuctures.  相似文献   

17.
Summary Mutual binding between a ligand of low molecular weight and its macromolecular receptor demands structural complementarity of both species at the recognition site. To predict binding properties of new molecules before synthesis, information about possible conformations of drug molecules at the active site is required, especially if the 3D structure of the receptor is not known. The statistical analysis of small-molecule crystal data allows one to elucidate conformational preferences of molecular fragments and accordingly to compile libraries of putative ligand conformations. A comparison of geometries adopted by corresponding fragments in ligands bound to proteins shows similar distributions in conformation space. We have developed an automatic procedure that generates different conformers of a given ligand. The entire molecule is decomposed into its individual ring and open-chain torsional fragments, each used in a variety of favorable conformations. The latter ones are produced according to the library information about conformational preferences. During this building process, an extensive energy ranking is applied. Conformers ranked as energetically favorable are subjected to an optimization in torsion angle space. During minimization, unfavorable van der Waals interactions are removed while keeping the open-chain torsion angles as close as possible to the experimentally most frequently observed values. In order to assess how well the generated conformers map conformation space, a comparison with experimental data has been performed. This comparison gives some confidence in the efficiency and completeness of this approach. For some ligands that had been structurally characterized by protein crystallography, the program was used to generate sets of some 10 to 100 conformers. Among these, geometries are found that fall convincingly close to the conformations actually adopted by these ligands at the binding site.  相似文献   

18.
We examined the quality of Catalyst's conformational model generation algorithm via a large scale study based on the crystal structures of a sample of 510 pharmaceutically relevant protein-ligand complexes extracted from the Protein Data Bank (PDB). Our results show that the tested algorithms implemented within Catalyst are able to produce high quality conformers, which in most of the cases are well suited for in silico drug research. Catalyst-specific settings were analyzed, such as the method used for the conformational model generation (FAST vs BEST) and the maximum number of generated conformers. By setting these options for higher fitting quality, the average RMS values describing the similarity of experimental and simulated conformers were improved from an RMS of 1.06 with max. 50 FAST generated conformers to an RMS of 0.93 with max. 255 BEST generated conformers, which represents an improvement by 12%. Each method provides best fitting conformers with an RMS value<1.50 in more than 80% of all cases. We analyzed the computing time/quality ratio of various conformational model generation settings and examined ligands in high energy conformations. Furthermore, properties of the same ligands in various proteins were investigated, and the fitting qualities of experimental conformations from the PDB and the Cambridge Structural Database (CSD) were compared. One of the most important conclusions of former studies, the fact that bioactive conformers often have energy high above that of global minima, was confirmed.  相似文献   

19.
The solution conformations of the novel estrogen receptor ligands (17α,20E)‐(p‐trifluoromethylphenyl)vinylestradiol ( 1 ) and (17α,20E)‐(o‐trifluoromethylphenyl)vinylestradiol ( 2 ) were investigated in 2D and 1D NOESY studies and by comparison of 13C NMR chemical shifts with theoretical shieldings. The 1H and 13C assignments of 1 and 2 were determined by DEPT, COSY and HMQC experiments. The conformations of the 17α‐phenylvinyl substituents of 1 and 2 are of interest because of their differing receptor binding affinities and effects in in vivo uterotrophic growth assays. A statistical method of evaluating contributing conformers of 1 and 2 from predicted 13C shifts of possible structures correlated fairly well with conformational conclusions derived from the NOE data. The 17α substituents of 1 and 2 apparently exist in similar conformational equilibria, suggesting that while 1 and 2 would occupy a similar receptor volume, interactions with the protein may shift the equilibrium and thereby influence the expression of the ligand. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
Covering: up to 2011. Natural products are of tremendous importance in both traditional and modern medicine. For medicinal chemistry natural products represent a challenge, as their chemical synthesis and modification are complex processes, which require many, often stereo-selective, synthetic steps. A prerequisite for the design of analogs of natural products, with more accessible synthetic routes, is the availability of their bioactive conformation. Nuclear Magnetic Resonance (NMR) spectroscopy and X-ray crystallography are the two techniques of choice to investigate the structure of natural products. In this review, I describe the most recent advances in NMR to study the conformation of natural products either free in solution or bound to their cellular receptors. In chapter 2, I focus on the use of residual dipolar couplings (RDC). On the basis of a few examples, I discuss the benefit of complementing classical NMR parameters, such as NOEs and scalar couplings, with dipolar couplings to simultaneously determine both the conformation and the relative configuration of natural products in solution. Chapter 3 is dedicated to the study of the structure of natural products in complex with their cellular receptors and is further divided in two sections. In the first section, I describe two solution-state NMR methodologies to investigate the binding mode of low-affinity ligands to macromolecular receptors. The first approach, INPHARMA (Interligand Noes for PHArmacophore Mapping), is based on the observation of interligand NOEs between two small molecules binding competitively to a common receptor. INPHARMA reveals the relative binding mode of the two ligands, thus allowing ligand superimposition. The second approach is based on paramagnetic relaxation enhancement (PRE) of ligand resonances in the presence of a receptor containing a paramagnetic center. In the second section, I focus on solid-state NMR spectroscopy as a tool to access the bioactive conformation of natural products in complex with macromolecular receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号