首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
If a domain R, with quotient field K, has a finite saturated chain of overrings from R to K, then the integral closure of R is a Prüfer domain. An integrally closed domain R with quotient field K has a finite saturated chain of overrings from R to K with length m ≥ 1 iff R is a Prüfer domain and |Spec(R)| =m + 1. In particular, we prove that a domain R has a finite saturated chain of overrings from R to K with length dim(R) iff R is a valuation domain and that an integrally closed domain R has a finite saturated chain of overrings from R to K with length dim (R) +1 iff R is a Prüfer domain with exactly two maximal ideals such that at most one of them fails to contain every non-maximal prime. The relationship with maximal non-valuation subrings is also established.  相似文献   

2.
Let (X,L) be a polarized manifold with dim X = n. In this paper, we classify (X,L) with n = 3, , and g(L)=q(X) + 2. Moreover we also classify (X,L) with , g(L)=q(x) + 2, and . Received February 12, 1999  相似文献   

3.
Let K be a nonempty closed convex proper subset of a real uniformly convex and uniformly smooth Banach space E; T:KE be an asymptotically weakly suppressive, asymptotically weakly contractive or asymptotically nonextensive map with F(T){xK: Tx=x}≠. Using the notion of generalized projection, iterative methods for approximating fixed points of T are studied. Convergence theorems with estimates of convergence rates are proved. Furthermore, the stability of the methods with respect to perturbations of the operators and with respect to perturbations of the constraint sets are also established.  相似文献   

4.
Let X, Y be T 1 topological spaces. A partial map from X to Y is a continuous function f whose domain is a subspace D of X and whose codomain is Y. Let P(X, Y) be the set of partial maps with domains in a fixed class D. In analogy with the global case, we introduce on P(X, Y), whatever be the nature of the domain class D, new function space topologies, the proximal set-open topologies, briefly PSOTs, deriving from general networks on X and proximity on Y by replacing inclusion with strong inclusion. The PSOTs include the already known generalized compact-open topology on partial maps with closed domains. When domains are supposed closed, the network α closed and hereditarily closed and the proximity δ on Y Efremovic, then the PSOT attached to α and δ is uniformizable iff α is a Urysohn family in X. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Let G be a 2-edge connected graph with at least 5 vertices. For any given vertices a, b, c, and d in G with ab, there exists in G3 a hamiltonian path with endpoints a and b avoiding the edge cd, and there exists in G3{cd} a hamiltonian path with endpoints a and b and containing the edge cd. Also, after removal of two edges or one edge and one vertex from G3, the resulting graph is still hamiltonian.  相似文献   

6.
Let T and T1 be tournaments with n elements, E a basis for T, E′ a basis for T′, and k ≥ 3 an integer. The dual of T is the tournament T” of basis E defined by T(x, y) = T(y, x) for all x, y ε E. A hemimorphism from T onto T′ is an isomorphism from T onto T” or onto T. A k-hemimorphism from T onto T′ is a bijection f from E to E′ such that for any subset X of E of order k the restrictions T/X and T1/f(X) are hemimorphic. The set of hemimorphisms of T onto itself has group structure, this group is called the group of hemimorphisms of T. In this work, we study the restrictions to n – 2 elements of a tournament with n elements. In particular, we prove: Let k ≥ 3 be an integer, T a tournament with n elements, where n ≥ k + 5. Then the following statements are equivalent: (i) All restrictions of T to subsets with n – 2 elements are k-hemimorphic. (ii) All restrictions of T to subsets with n – 2 elements are 3-hemimorphic. (iii) All restrictions of T to subsets with n – 2 elements are hemimorphic. (iv) All restrictions of T to subsets with n – 2 elements are isomorphic, (v) Either T is a strict total order, or the group of hemimorphisms of T is 2-homogeneous.  相似文献   

7.
Given an integrable Hamiltonian h 0 with n-degrees of freedom and a Diophantine frequency ω, then, arbitrarily close to h 0 in the C r topology with r < 2n, there exists an analytical Hamiltonian h ε with no KAM torus of rotation vector ω. In contrast with it, KAM tori exist if perturbations are small in C r topology with r > 2n.  相似文献   

8.
We establish the existence and uniqueness of solutions of fully nonlinear elliptic second-order equations like H(v, Dv, D 2 v, x) = 0 in smooth domains without requiring H to be convex or concave with respect to the second-order derivatives. Apart from ellipticity nothing is required of H at points at which |D 2 v| ≤K, where K is any given constant. For large |D 2 v| some kind of relaxed convexity assumption with respect to D 2 v mixed with a VMO condition with respect to x are still imposed. The solutions are sought in Sobolev classes.  相似文献   

9.
A clique is a set of pairwise adjacent vertices in a graph. We determine the maximum number of cliques in a graph for the following graph classes: (1) graphs with n vertices and m edges; (2) graphs with n vertices, m edges, and maximum degree Δ; (3) d-degenerate graphs with n vertices and m edges; (4) planar graphs with n vertices and m edges; and (5) graphs with n vertices and no K5-minor or no K3,3-minor. For example, the maximum number of cliques in a planar graph with n vertices is 8(n − 2). Research supported by a Marie Curie Fellowship of the European Community under contract 023865, and by the projects MCYT-FEDER BFM2003-00368 and Gen. Cat 2001SGR00224.  相似文献   

10.
T be a simple k-uniform hypertree with t edges. It is shown that if H is any k-uniform hypergraph with n vertices and with minimum degree at least , and the number of edges of H is a multiple of t then H has a T-decomposition. This result is asymptotically best possible for all simple hypertrees with at least two edges. Received December 28, 1998  相似文献   

11.
Forn≧6 there exists a graphG with dimG=n, dimG*≧n+2, whereG* isG with a certain edge added.  相似文献   

12.
An mcovering of a graph G is a spanning subgraph of G with maximum degree at most m. In this paper, we shall show that every 3‐connected graph on a surface with Euler genus k ≥ 2 with sufficiently large representativity has a 2‐connected 7‐covering with at most 6k ? 12 vertices of degree 7. We also construct, for every surface F2 with Euler genus k ≥ 2, a 3‐connected graph G on F2 with arbitrarily large representativity each of whose 2‐connected 7‐coverings contains at least 6k ? 12 vertices of degree 7. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 26–36, 2003  相似文献   

13.
We consider the problem of finding in a graph a set R of edges to be colored in red so that there are maximum matchings having some prescribed numbers of red edges. For regular bipartite graphs with n nodes on each side, we give sufficient conditions for the existence of a set R with |R|=n+1 such that perfect matchings with k red edges exist for all k,0≤kn. Given two integers p<q we also determine the minimum cardinality of a set R of red edges such that there are perfect matchings with p red edges and with q red edges. For 3-regular bipartite graphs, we show that if p≤4 there is a set R with |R|=p for which perfect matchings Mk exist with |MkR|≤k for all kp. For trees we design a linear time algorithm to determine a minimum set R of red edges such that there exist maximum matchings with k red edges for the largest possible number of values of k.  相似文献   

14.
The following results for proper quasi‐symmetric designs with non‐zero intersection numbers x,y and λ > 1 are proved.
  • (1) Let D be a quasi‐symmetric design with z = y ? x and v ≥ 2k. If x ≥ 1 + z + z3 then λ < x + 1 + z + z3.
  • (2) Let D be a quasi‐symmetric design with intersection numbers x, y and y ? x = 1. Then D is a design with parameters v = (1 + m) (2 + m)/2, b = (2 + m) (3 + m)/2, r = m + 3, k = m + 1, λ = 2, x = 1, y = 2 and m = 2,3,… or complement of one of these design or D is a design with parameters v = 5, b = 10, r = 6, k = 3, λ = 3, and x = 1, y = 2.
  • (3) Let D be a triangle free quasi‐symmetric design with z = y ? x and v ≥ 2k, then xz + z2.
  • (4) For fixed z ≥ 1 there exist finitely many triangle free quasi‐symmetric designs non‐zero intersection numbers x, y = x + z.
  • (5) There do not exist triangle free quasi‐symmetric designs with non‐zero intersection numbers x, y = x + 2.
© 2006 Wiley Periodicals, Inc. J Combin Designs 15: 49–60, 2007  相似文献   

15.
The following theorem is proved: Let G be a finite graph with cl(G) = m, where cl(G) is the maximum size of a clique in G. Then for any integer r ≥ 1, there is a finite graph H, also with cl(H) = m, such that if the edges of H are r-colored in any way, then H contains an induced subgraph G′ isomorphic to G with all its edges the same color.  相似文献   

16.
The following two results are proved. Let D be a triangle free quasi-symmetric design with k=2yx and x≥ 1 then D is a trivial design with v=5 and k=3. There do no exist triangle free quasi-symmetric designs with x≥ 1 and λ=y or λ=y−1.Communicated by: P. Wild  相似文献   

17.
A matching game is a cooperative game (N, v) defined on a graph G = (N, E) with an edge weighting w: E? \mathbb R+{w: E\to {\mathbb R}_+}. The player set is N and the value of a coalition S í N{S \subseteq N} is defined as the maximum weight of a matching in the subgraph induced by S. First we present an O(nm + n 2 log n) algorithm that tests if the core of a matching game defined on a weighted graph with n vertices and m edges is nonempty and that computes a core member if the core is nonempty. This algorithm improves previous work based on the ellipsoid method and can also be used to compute stable solutions for instances of the stable roommates problem with payments. Second we show that the nucleolus of an n-player matching game with a nonempty core can be computed in O(n 4) time. This generalizes the corresponding result of Solymosi and Raghavan for assignment games. Third we prove that is NP-hard to determine an imputation with minimum number of blocking pairs, even for matching games with unit edge weights, whereas the problem of determining an imputation with minimum total blocking value is shown to be polynomial-time solvable for general matching games.  相似文献   

18.
We describe the controllability sets of linear nonautonomous systems = A(t)x + B(t)u, x ∈ ℝ n , uU ⊆ ℝ m , with entire matrix functions A(t) and B(t) and with a linear set U of control constraints. We derive a criterion for the complete controllability of these linear systems in terms of derivatives of the entire matrix functions A(t) and B(t) at zero. This complete controllability criterion is compared with the Kalman and Krasovskii criteria.  相似文献   

19.
The square G2 of a graph G is the graph with the same vertex set G and with two vertices adjacent if their distance in G is at most 2. Thomassen showed that every planar graph G with maximum degree Δ(G) = 3 satisfies χ(G2) ≤ 7. Kostochka and Woodall conjectured that for every graph, the list‐chromatic number of G2 equals the chromatic number of G2, that is, χl(G2) = χ(G2) for all G. If true, this conjecture (together with Thomassen's result) implies that every planar graph G with Δ(G) = 3 satisfies χl(G2) ≤ 7. We prove that every connected graph (not necessarily planar) with Δ(G) = 3 other than the Petersen graph satisfies χl(G2) ≤8 (and this is best possible). In addition, we show that if G is a planar graph with Δ(G) = 3 and girth g(G) ≥ 7, then χl(G2) ≤ 7. Dvo?ák, ?krekovski, and Tancer showed that if G is a planar graph with Δ(G) = 3 and girth g(G) ≥ 10, then χl(G2) ≤6. We improve the girth bound to show that if G is a planar graph with Δ(G) = 3 and g(G) ≥ 9, then χl(G2) ≤ 6. All of our proofs can be easily translated into linear‐time coloring algorithms. © 2007 Wiley Periodicals, Inc. J Graph Theory 57: 65–87, 2008  相似文献   

20.
A graph L is called a link graph if there is a graph G such that for each vertex of G its neighbors induce a subgraph isomorphic to L. Such a G is said to have constant link .L Sabidussi proved that for any finite group F and any n ? 3 there are infinitely many n-regular connected graphs G with AutG ? Γ. We will prove a stronger result: For any finite group Γ and any link graph L with at least one isolated vertex and at least three vertices there are infinitely many connected graphs G with constant link L and AutG ? Γ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号