首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
非线性系统动力分析的模态综合技术   总被引:6,自引:0,他引:6  
各种模态综合方法已广泛应用于线性结构的动力分析,但是,一般都不适用于非线性系统. 本文基于[20][21]提出的方法,将一种模态综合技术推广到非线性系统的动力分析.该法应用于具有连接件耦合的复杂结构系统,以往把连接件简化为线性弹簧和阻尼器.事实上,这些连接件通常具有非线性弹性和非线性阻尼特性.例如,分段线性弹簧、软特性或硬特性弹簧、库伦阻尼、弹塑性滞后阻尼等.但就各部件而言,仍属线性系统.可以通过计算或试验或兼由两者得到一组各部件的独立的自由界面主模态信息,且只保留低阶主模态.通过连接件的非线性耦合力,集合各部件运动方程而建立成总体的非线性振动方程.这样问题就成为缩减了自由度的非线性求解方程,可以达到节省计算机的存贮和运行时间的目的.对于阶次很高的非线性系统,若能缩减足够的自由度,那么问题就可在普通的计算机上得以解决. 由于一般多自由度非线性振动系统的复杂性,一般而言,这种非线性方程很难找到精确解.因此,对于任意激励下系统的瞬态响应,可以采用数值计算方法求解缩减的非线性方程.  相似文献   

3.
Vibration damping for slender beams is achieved by applying devices at external points. The latter consist of general single visco-elastic springpot elements. An approximate nonlinear boundary value problem is found in frequency domain that holds for moderately large vibrations or for linear beams with external nonlinear devices, both in the vicinity of primary resonances. The interaction force of a so-called springpot element is expressed as a sum of two separate forces: the first develops due to the external loading function at the device location, and the second contribution arises due to an imposed time-harmonic support excitation with no other external forces acting on the structure. Finally the nonlinear frequency response function follows from a (nonlinear) algebraic equation where the influence of the springpot element appears as isolated parameter. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
This paper presents an innovative analytical approximate method for constructing the primary resonance response of harmonically forced oscillators with strongly general nonlinearity. A linearization process is introduced prior to harmonic balancing (HB) of the nonlinear system and a linear system is derived by which the accurate analytical approximation procedure is easily and innovatively implemented. The main cutting edge of the proposed method is that complicated and coupled nonlinear algebraic equations obtained by the classical HB method is avoided. With only one iteration, very accurate analytical approximate primary resonance response can be determined, even for significantly nonlinear systems. Another advantage is the direct determination of the maximum oscillation amplitude. This is due to the appropriate form chosen for the approximation with no extra processing required. It is concluded that the result of an initial approximate solution from the two-term (constant plus the first harmonic term) harmonic balance is not reliable especially for strongly nonlinear systems and a correction to the initial approximation is necessary. The proposed method can be applied to general oscillators with mixed nonlinearities, such as the Helmholtz-Duffing oscillator. Two examples are presented to illustrate the applicability and effectiveness of the proposed technique.  相似文献   

5.
Frequency domain solution of systems with frequency dependent damping is a computationally expensive endeavour especially when dealing with large order three-dimensional systems. A moment-matching based reduced order model is proposed in this work which is capable of handling nonlinear frequency dependent damping in second-order systems. In the proposed approach, local linear systems with frequency independent matrices are derived from the original system, and using the principles of the Rational Krylov approach, orthogonal basis vectors are computed from these local systems through the second-order Arnoldi procedure. The system is then projected on to the basis set to obtain a numerically efficient reduced order model, accurate in the entire frequency domain of interest. The proposed approach is also shown to be more accurate than the popular modal projection based multi-model approach of the same order. The proposed tool is applied to the problem of determining the frequency response of an idealised centrifugal compressor impeller with non-viscous (frequency dependent) damping.  相似文献   

6.
针对随机激励环境,同时引入刚度和阻尼非线性来提高隔振系统的隔振性能.刚度和阻尼非线性分别是由水平弹簧和水平阻尼的几何布置获得.通过求解Fokker-Planck-Kolmogorov(FPK)方程等效非线性随机振动方程来研究非线性隔振系统在随机激励下的隔振性能,并使用路径积分和Monte-Carlo数值方法进行验证.在此基础上研究刚度非线性和阻尼非线性对隔振系统在随机激励下力传递率及其概率分布的影响.研究表明随着噪声强度的增加,非线性阻尼抑制振动的能力增强,但是在较小的随机激励下线性阻尼优于非线性阻尼.  相似文献   

7.
In this paper a new linearization procedure based on Homotopy Perturbation Method (HPM) will be presented. The procedure begins with solving nonlinear differential equation by HPM. This will be done by evaluation of the time response of a nonlinear dynamic. An equivalent Laplace transform of the time response will be obtained. In the preceding, the effect of an external excitation i.e. input, will be removed from the model to find an approximate linear model for the nonlinear dynamic. The effectiveness of the procedure is verified using a heat transfer nonlinear equation. Ultimately, both HPM based linear model and that of nonlinear have been controlled via a closed loop PID controller. The simulation result shows the significance of the proposed technique.  相似文献   

8.
This work presents an iterative scheme for the numerical solution of the space-time fractional two-dimensional advection–reaction–diffusion equation applying homotopy perturbation with Laplace transform using Caputo fractional-order derivatives. The solution obtained is beneficial and significant to analyze the modeling of superdiffusive systems and subdiffusive system, anomalous diffusion, transport process in porous media. This iterative technique presents the combination of homotopy perturbation technique, and Laplace transforms with He's polynomials, which can further be applied to numerous linear/nonlinear two-dimensional fractional models to computes the approximate analytical solution. In the present method, the nonlinearity can be tackle by He's polynomials. The salient features of the present scientific work are the pictorial presentations of the approximate numerical solution of the two-dimensional fractional advection–reaction–diffusion equation for different particular cases of fractional order and showcasing of the damping effect of reaction terms on the nature of probability density function of the considered two-dimensional nonlinear mathematical models for various situations.  相似文献   

9.
The automotive industry is predominantly driven by legislations on stringent emissions. This has led to the introduction of downsized engines, incorporating turbocharging to maintain output power. As downsized engines have higher combustion pressures, the resulting torsional oscillations (engine order vibrations) are of broadband nature with an increasing severity, which affect noise and vibration response of the drive train system. Palliative devices, such as clutch pre-dampers and dual mass flywheel have been used to mitigate the effect of transmitted engine torsional oscillations. Nevertheless, the effectiveness of these palliative measures is confined to a narrow band of response frequencies. The nonlinear targeted energy transfer is a promising approach to study vibration mitigation within a broader range of frequencies, using nonlinear vibration absorbers (or nonlinear energy sinks – NESs). These devices would either redistribute vibration energy within the modal space of the primary structure, thus dissipating the vibrational energy more efficiently through structural damping, or passively absorb and locally dissipate a part of this energy (in a nearly irreversible manner) from the primary structure. The absence of a linear resonance frequency of an NES, enables its broadband operation (in contrast to the narrowband operation of current linear tuned mass dampers). Parametric studies are reported to determine the effectiveness of various smooth or non-smooth nonlinear stiffness characteristics of such absorbers. A reduced drivetrain model, incorporating single and multiple absorber attachments is used and comparison of the predictions to numerical integrations proves its efficacy.  相似文献   

10.
This paper is concerned with the relative approximate controllability of functional systems with infinite delay and delayed control in Hilbert spaces. In particular, we begin with studying some criteria of the controllability of linear systems. Based on those results, sufficient conditions are derived for the relative approximate controllability of nonlinear functional systems. Finally, an example is included to illustrate the effectiveness of the proposed methods. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
In this article an efficient method is developed for optimal design of a nonlinear tuned mass damper (N-TMD) system. Using several horizontal linear springs coming into action sequentially, system nonlinearity can be achieved with ease as a novel method. Friction force between tuned mass and the structure is variably produced by a vertical linear spring that follows a specified controlling curved path allowing reduction of the desired tuned mass. Chaotic behavior of the introduced tuned mass is investigated in terms of the existing parameters in the system. Lyapunov characteristic exponents are determined to demonstrate the chaotic behavior of the system. It is confirmed by comparison that the proposed scheme is able to retrofit structures in a superior way than some other devices such as multiple tuned mass damper systems. The optimization procedure is performed by sequential Simplex algorithm, while Newmark’s beta method for step by step integration is used to find the dynamic response of the structure.  相似文献   

12.
Han Hu  Carsten Proppe 《PAMM》2011,11(1):227-228
This paper proposes an identification method for general linear time-varying (LTV) MDOF systems and weakly nonlinear systems based on the Hilbert-Huang Transform (HHT)[1]. The proposed method uses Empirical mode decomposition (EMD) to decompose the response signals of systems into intrinsic mode functions (IMFs) and residues, and then analyzes the IMFs and the residues by Hilbert transform (HT) to obtain the analytical IMFs and analytical residues. After that, the above signals are synthesized to form new response signals and new analytical response signals. Finally, the new synthesized signals are used to identify the stiffness and damping coefficients of the systems. Three types of variation: smooth, abrupt and periodical variations are considered in the numerical simulations of LTV chainlike[2] and nonchainlike systems as well as weakly nonlinear systems such as Duffing oscillators and Van der Pol oscillators with white noise added in the system responses to demonstrate the effectiveness, accuracy and robustness of the proposed method. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
This paper considers an infinite-time optimal damping control problem for a class of nonlinear systems with sinusoidal disturbances. A successive approximation approach (SAA) is applied to design feedforward and feedback optimal controllers. By using the SAA, the original optimal control problem is transformed into a sequence of nonhomogeneous linear two-point boundary value (TPBV) problems. The existence and uniqueness of the optimal control law are proved. The optimal control law is derived from a Riccati equation, matrix equations and an adjoint vector sequence, which consists of accurate linear feedforward and feedback terms and a nonlinear compensation term. And the nonlinear compensation term is the limit of the adjoint vector sequence. By using a finite term of the adjoint vector sequence, we can get an approximate optimal control law. A numerical example shows that the algorithm is effective and robust with respect to sinusoidal disturbances.  相似文献   

14.
Both the autonomous and non-autonomous systems with fractional derivative damping are investigated by the harmonic balance method in which the residue resulting from the truncated Fourier series is reduced iteratively. The first approximation using a few Fourier terms is obtained by solving a set of nonlinear algebraic equations. The unbalanced residues due to Fourier truncation are considered iteratively by solving linear algebraic equations to improve the accuracy and increase the number of Fourier terms of the solutions successively. Multiple solutions, representing the occurrences of jump phenomena, supercritical pitchfork bifurcation and symmetry breaking phenomena are predicted analytically. The interactions of the excitation frequency, the fractional order, amplitude, phase angle and the frequency amplitude response are examined. The forward residue harmonic balance method is presented to obtain the analytical approximations to the angular frequency and limit cycle for fractional order van der Pol oscillator. Numerical results reveal that the method is very effective for obtaining approximate solutions of nonlinear systems having fractional order derivatives.  相似文献   

15.
In Mokni et al. [Mokni L, Belhaq M, Lakrad F. Effect of fast parametric viscous damping excitation on vibration isolation in sdof systems. Commun Nonlinear Sci Numer Simulat 2011;16:1720-1724], it was shown that in a single degree of freedom system a fast nonlinear parametric damping enhances vibration isolation with respect to the case where the nonlinear damping is time-independent. The present work proposes additional enhancement of vibration isolation using delayed nonlinear damping. Attention is focused on assessing the contribution of a delayed nonlinear damping over a fast parametric damping in terms of minimizing transmissibility. The results show that a nonlinear damping with delay greatly improves vibration isolation.  相似文献   

16.
We consider systems of Timoshenko type in a one-dimensional bounded domain. The physical system is damped by a single feedback force, only in the equation for the rotation angle, no direct damping is applied on the equation for the transverse displacement of the beam. Moreover the damping is assumed to be nonlinear with no growth assumption at the origin, which allows very weak damping. We establish a general semi-explicit formula for the decay rate of the energy at infinity in the case of the same speed of propagation in the two equations of the system. We prove polynomial decay in the case of different speed of propagation for both linear and nonlinear globally Lipschitz feedbacks.   相似文献   

17.
Solving the Fokker-Planck-Equation for multidimensional nonlinear systems is a great challenge in the field of stochastic dynamics. As for many mechanical systems a general idea about the shape of stationary solutions for the probability density function is known, it seems promising to use an approach that contains this knowledge. This is done using a Galerkin-method which applies approximate solutions as weighting functions for the expansion of orthogonal polynomials, e.g. generalized Hermite polynomials [1]. As examples, nonlinear oscillators containing cubical restoring (Duffing oscillators) and cubical damping elements are considered. The method is applied to the two-dimensional problem of a single-degree-of-freedom oscillator and consecutively extended up to dimension ten. Results for probability density functions are presented and compared with results from Monte Carlo simulations. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
In this article, we implement a relatively new numerical technique, Adomian’s decomposition method for solving the linear Helmholtz partial differential equations. The method in applied mathematics can be an effective procedure to obtain for the analytic and approximate solutions. A new approach to a linear or nonlinear problems is particularly valuable as a tool for Scientists and Applied Mathematicians, because it provides immediate and visible symbolic terms of analytic solution as well as its numerical approximate solution to both linear and nonlinear problems without linearization [Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic Publishers, Boston, 1994; J. Math. Anal. Appl. 35 (1988) 501]. It does also not require discretization and consequently massive computation. In this scheme the solution is performed in the form of a convergent power series with easily computable components. This paper will present a numerical comparison with the Adomian decomposition and a conventional finite-difference method. The numerical results demonstrate that the new method is quite accurate and readily implemented.  相似文献   

19.
Klaus Röbenack 《PAMM》2006,6(1):837-838
If one can transform a nonlinear system into observer normal form, it is possible to design an observer with exactly linear error dynamics. Unfortunately, many systems of practical relevance violate the existence conditions of the normal form. This drawback can be circumvented by means of an approximate observer normal form. The actual computation of the associated transformation may still be very difficult. We suggest a nonlinear observer design procedure that avoids this drawback. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
《Applied Mathematical Modelling》2014,38(21-22):5239-5255
The strong nonlinear behavior usually exists in rotor systems supported by oil-film journal bearings. In this paper, the partial derivative method is extended to the second-order approximate extent to predict the nonlinear dynamic stiffness and damping coefficients of finite-long journal bearings. And the nonlinear oil-film forces approximately represented by dynamic coefficients are used to analyze nonlinear dynamic performance of a symmetrical flexible rotor-bearing system via the journal orbit, phase portrait and Poincaré map. The effects of mass eccentricity on dynamic behaviors of rotor system are mainly investigated. Moreover, the computational method of nonlinear dynamic coefficients of infinite-short bearing is presented. The nonlinear oil-film forces model of finite-long bearing is validated by comparing the numerical results with those obtained by an infinite-short bearing-rotor system model. The results show that the representation method of nonlinear oil-film forces by dynamic coefficients has universal applicability and allows one easily to conduct the nonlinear dynamic analysis of rotor systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号