首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Falk Ebert  Simone Bächle 《PAMM》2006,6(1):731-732
The numerical simulation of very large scale integrated circuits is an important tool in the development of new industrial circuits. In the course of the last years, this topic has received increasing attention. Common modeling approaches for circuits lead to differential-algebraic systems (DAEs). In circuit simulation, these DAEs are known to have index 2, given some topological properties of the network. This higher index leads to several undesirable effects in the numerical solution of the DAEs. Recent approaches try to lower the index of DAEs to improve the numerical behaviour. These methods usually involve costly algebraic transformations of the equations. Especially, for large scale circuit equations, these transformations become too costly to be efficient. We will present methods that change the topology of the network itself, while replacing certain elements in oder to obtain a network that leads to a DAE of index 1, while not altering the analytical solution of the DAE. This procedure can be performed prior to the actual numerical simulation. The decreasing of the index usually leads to significantly improved numerical behaviour. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Summary. In the last few years there has been considerable research on numerical methods for differential algebraic equations (DAEs) where is identically singular. The index provides one measure of the singularity of a DAE. Most of the numerical analysis literature on DAEs to date has dealt with DAEs with indices no larger than three. Even in this case, the systems were often assumed to have a special structure. Recently a numerical method was proposed that could, in principle, be used to integrate general unstructured higher index solvable DAEs. However, that method did not preserve constraints. This paper will discuss a modification of that approach which can be used to design constraint preserving integrators for general nonlinear higher index DAEs. Received August 25, 1993 / Revised version received April 7, 1994  相似文献   

3.
Modern modeling approaches for circuit analysis lead to differential-algebraic equations (DAEs). The index of a DAE is a measure of the degree of numerical difficulty. In general, the higher the index is, the more difficult it is to solve the DAE. The index of the DAE arising from the modified nodal analysis (MNA) is determined uniquely by the structure of the circuit. Instead, we consider a broader class of analysis method called the hybrid analysis. For linear time-invariant electric circuits, we devise a combinatorial algorithm for finding an optimal hybrid analysis in which the index of the DAE to be solved attains the minimum. The optimal hybrid analysis often results in a DAE with lower index than MNA.   相似文献   

4.
The idea of the index of a differential algebraic equation (DAE) (or implicit differential equation) has played a fundamental role in both the analysis of DAEs and the development of numerical algorithms for DAEs. DAEs frequently arise as partial discretizations of partial differential equations (PDEs). In order to relate properties of the PDE to those of the resulting DAE it is necessary to have a concept of the index of a possibly constrained PDE. Using the finite dimensional theory as motivation, this paper will examine what one appropriate analogue is for infinite dimensional systems. A general definition approach will be given motivated by the desire to consider numerical methods. Specific examples illustrating several kinds of behavior will be considered in some detail. It is seen that our definition differs from purely algebraic definitions. Numerical solutions, and simulation difficulties, can be misinterpreted if this index information is missing.  相似文献   

5.
The computation of consistent initial values is one of the basic problems when solving initial or boundary value problems of DAEs. For a given DAE it is, in fact, not obvious how to formulate the initial conditions that lead to a uniquely solvable IVP. The existing algorithms for the solution of this problem are either designed for fixed index, or they require a special structure of the DAE or they need more than the given data (e.g. additional differentiations). In this paper, combining the results concerning the solvability of DAEs with properly stated leading terms with an appropriate method for the approximation of the derivative, we propose an algorithm that provides the necessary data to formulate the initial conditions and which works at least for nonlinear DAEs up to index 3. Illustrative examples are given.   相似文献   

6.
The HBT(10)9 method for ODEs is expanded into HBT(10)9DAE for solving nonstiff and moderately stiff systems of fully implicit differential algebraic equations (DAEs) of arbitrarily high fixed index. A scheme to generate first-order derivatives at off-step points is combined with Pryce scheme which generates high order derivatives at step points. The stepsize is controlled by a local error estimator. HBT(10)9DAE uses only the first four derivatives of y instead of the first 10 required by Taylor’s series method T10DAE of order 10. Dormand–Prince’s DP(8,7)13M for ODEs is extended to DP(8,7)DAE for DAEs. HBT(10)9DAE wins over DP(8,7)DAE on several test problems on the basis of CPU time as a function of relative error at the end of the interval of integration. An index-5 problem is equally well solved by HBT(10)9DAE and T10DAE. On this problem, the error in the solution by DP(8,7)DAE increases as time increases.  相似文献   

7.
Summary For the numerical solution of non-stiff semi-explicit differentialalgebraic equations (DAEs) of index 1 half-explicit Runge-Kutta methods (HERK) are considered that combine an explicit Runge-Kutta method for the differential part with a simplified Newton method for the (approximate) solution of the algebraic part of the DAE. Two principles for the choice of the initial guesses and the number of Newton steps at each stage are given that allow to construct HERK of the same order as the underlying explicit Runge-Kutta method. Numerical tests illustrate the efficiency of these methods.  相似文献   

8.
We study the numerical behavior of parallel two‐step W‐methods (PTSW methods) applied to index 2 and index 3 DAE test‐problems. In this experiments we do not observe an order reduction in the differential components of the solution and we obtain the same orders as in the ODE and index 1 case. Our methods perform comparably with RADAU for the test‐problems in sequential computations and superior in parallel mode. We conclude that PTSW methods are an interesting choice for solving DAEs, at least up to index 2.  相似文献   

9.
10.
Considerable numerical software has been written for simulation and optimization of dynamical systems. From the beginning of their development, differential algebraic equations (DAEs) have often been proposed as a way to make modeling easier. The modeler need only write down equations relating the variables in the model. However, much DAE software requires at least as much user numerical and mathematical expertise as explicit methods. An important aspect of our research has been working toward helping the idea of DAEs achieve its promise in modeling and simulation by both pushing the software to handle more general problems and to also allow for less user expertise. Some recent examples are presented where this research impacts on software and their underlying algorithms. Space necessitates we assume the reader has a rough idea of what a DAE is. The examples are implicit Scicos, and optimization of DAE models. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Standard ODE methods such as linear multistep methods encounter difficulties when applied to differential-algebraic equations (DAEs) of index greater than 1. In particular, previous results for index 2 DAEs have practically ruled out the use of all explicit methods and of implicit multistep methods other than backward difference formulas (BDFs) because of stability considerations. In this paper we embed known results for semi-explicit index 1 and 2 DAEs in a more comprehensive theory based on compound multistep and one-leg discretizations. This explains and characterizes the necessary requirements that a method must fulfill in order to be applicable to semi-explicit DAEs. Thus we conclude that the most useful discretizations are those that avoid discretization of the constraint. A freer use of e.g. explicit methods for the non-stiff differential part of the DAE is then possible.Dedicated to Germund Dahlquist on the occasion of his 70th birthdayThis author thanks the Centro de Estadística y Software Matemático de la Universidad Simón Bolivar (CESMa) for permitting her free use of its research facilities.Partial support by the Swedish Research Council for Engineering Sciences TFR under contract no. 222/91-405.  相似文献   

12.
Differential algebraic equations (DAEs) define a differential equation on a manifold. A number of ways have been developed to numerically solve some classes of DAEs. Motivated by problems in control theory, numerical simulation, and the use of general purpose modeling environments, recent research has considered the embedding of the DAE solutions of a general DAE into the solutions of an ODE where the added dynamics have special properties. This paper both provides new results on the linear time-varying case and considers the important nonlinear case.  相似文献   

13.
We investigate a semi-smooth Newton method for the numerical solution of optimal control problems subject to differential-algebraic equations (DAEs) and mixed control-state constraints. The necessary conditions are stated in terms of a local minimum principle. By use of the Fischer-Burmeister function the local minimum principle is transformed into an equivalent nonlinear and semi-smooth equation in appropriate Banach spaces. This nonlinear and semi-smooth equation is solved by a semi-smooth Newton method. We extend known local and global convergence results for ODE optimal control problems to the DAE optimal control problems under consideration. Special emphasis is laid on the calculation of Newton steps which are given by a linear DAE boundary value problem. Regularity conditions which ensure the existence of solutions are provided. A regularization strategy for inconsistent boundary value problems is suggested. Numerical illustrations for the optimal control of a pendulum and for the optimal control of discretized Navier-Stokes equations conclude the article.  相似文献   

14.
An approach to solve constrained minimization problems is to integrate a corresponding index 2 differential algebraic equation (DAE). Here, corresponding means that the ω-limit sets of the DAE dynamics are local solutions of the minimization problem. In order to obtain an efficient optimization code, we analyze the behavior of certain Runge–Kutta and linear multistep discretizations applied to these DAEs. It is shown that the discrete dynamics reproduces the geometric properties and the long-time behavior of the continuous system correctly. Finally, we compare the DAE approach with a classical SQP-method.  相似文献   

15.
Campbell  S.L.  Hollenbeck  R.  Yeomans  K.  Zhong  Y. 《Numerical Algorithms》1998,19(1-4):73-83
Differential-algebraic equations (DAEs) arise in many ways in many types of problems. In this expository paper we discuss a variety of situations where we have found mixed symbolic-numerical calculations to be essential. The paper is designed to both familiarize the reader with several fundamental DAE ideas and to present some applications. The situations discussed include the analysis of DAEs, the solution of DAEs, and applications which include DAEs. Both successes and challenges will be presented. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
In the simulation of dynamical processes in economy, social sciences, biology or chemistry, the analyzed values often represent non-negative quantities like the amount of goods or individuals or the density of a chemical or biological species. Such systems are typically described by positive ordinary differential equations (ODEs) that have a non-negative solution for every non-negative initial value. Besides positivity, these processes often are subject to algebraic constraints that result from conservation laws, limitation of resources, or balance conditions and thus the models are differential-algebraic equations (DAEs). In this work, we present conditions under which both these properties, the positivity as well as the algebraic constraints, are preserved in the numerical simulation by Runge–Kutta or multistep discretization methods. Using a decomposition approach, we separate the dynamic and the algebraic equations of a given linear, positive DAE to give positivity preserving conditions for each part separately. For the dynamic part, we generalize the results for positive ODEs to DAEs using the solution representation via Drazin inverses. For the algebraic part, we use the consistency conditions of the discretization method to derive conditions under which this part of the approximation overestimates the exact solution and thus is non-negative. We analyze these conditions for some common Runge–Kutta and multistep methods and observe that for index-1 systems and stiffly accurate Runge–Kutta methods, positivity is conditionally preserved under similar conditions as for ODEs. For higher index problems, however, none of the common methods is suitable.  相似文献   

17.
We analyze Runge-Kutta discretizations applied to nonautonomous index 2 differential algebraic equations (DAEs) in semi-explicit form. It is shown that for half-explicit and projected Runge-Kutta methods there is an attractive invariant manifold for the discrete system which is close to the invariant manifold of the DAE. The proof combines reduction techniques to autonomou index 2 differential algebraic equations with some invariant manifold results of Schropp [9]. The results support the favourable behavior of these Runge-Kutta methods applied to index 2 DAEs for t = 0.  相似文献   

18.
We study linear semi-explicit stochastic operator differential algebraic equations (DAEs) for which the constraint equation is given in an explicit form. In particular, this includes the Stokes equations arising in fluid dynamics. We combine a white noise polynomial chaos expansion approach to include stochastic perturbations with deterministic regularization techniques. With this, we are able to include Gaussian noise and stochastic convolution terms as perturbations in the differential as well as in the constraint equation. By the application of the polynomial chaos expansion method, we reduce the stochastic operator DAE to an infinite system of deterministic operator DAEs for the stochastic coefficients. Since the obtained system is very sensitive to perturbations in the constraint equation, we analyze a regularized version of the system. This then allows to prove the existence and uniqueness of the solution of the initial stochastic operator DAE in a certain weighted space of stochastic processes.  相似文献   

19.
Modeling electric circuits that contain magnetoquasistatic (MQS) devices leads to a coupled system of differential-algebraic equations (DAEs). In our case, the MQS device is described by the eddy current problem being already discretized in space (via edge-elements). This yields a DAE with a properly stated leading term, which has to be solved in the time domain. We are interested in structural properties of this system, which are important for numerical integration. Applying a standard projection technique, we are able to deduce topological conditions such that the tractability index of the coupled problem does not exceed two. Although index-2, we can conclude that the numerical difficulties for this problem are not severe due to a linear dependency on index-2 variables.  相似文献   

20.
The detection of singular points of DAEs is a challenging task, which has not been sufficiently considered so far. Combining automatic differentiation (AD) with the projector based analysis of DAEs, it becomes possible to monitor singularities while integrating the DAE. In this brief outline we restrict our considerations to linear DAEs. The corresponding treatment of nonlinear DAEs is based on linearization and can be found in the cited literature. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号