首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using the Newman-Penrose formalism and the brick wall model the entropy of a Kerr black hole due to a massless Rarita–Schwinger field is calculated. The dependence of the subleading correction with the spin is analyzed and the differences with previously published results are discussed.  相似文献   

2.
The analytic properties of scattering amplitudes provide important information. Besides the cuts, the poles and zeros on the different Riemann sheets determine the global behavior of the amplitude on the physical axis. Pole positions and residues allow for a parameterization of resonances in a well-defined way, free of assumptions for the background and energy dependence of the resonance part. This is a necessary condition to relate resonance contributions in different reactions. In the present study, we determine the pole structure of pion–nucleon scattering in an analytic model based on meson exchange. For this, the sheet structure of the amplitude is determined. To show the precision of the resonance extraction and discuss phenomena such as resonance interference, we discuss the S11 amplitude in greater detail.  相似文献   

3.
A realistic physical axiomatic approach of the relativistic quantum field theory is presented. Following the action principle of Schwinger, a covariant and general formulation is obtained. The correspondence principle is not invoked and the commutation relations are not postulated but deduced. The most important theorems such as spin-statistics, and CPT are proved. The theory is constructed form the notion of basic field and system of basic fields. In comparison with others formulations, in our realistic approach fields are regarded as real things with symmetry properties. Finally, the general structure is contrasted with other formulations.  相似文献   

4.
In this paper, we generalize the notion of Shannon’s entropy power to the Rényi-entropy setting. With this, we propose generalizations of the de Bruijn identity, isoperimetric inequality, or Stam inequality. This framework not only allows for finding new estimation inequalities, but it also provides a convenient technical framework for the derivation of a one-parameter family of Rényi-entropy-power-based quantum-mechanical uncertainty relations. To illustrate the usefulness of the Rényi entropy power obtained, we show how the information probability distribution associated with a quantum state can be reconstructed in a process that is akin to quantum-state tomography. We illustrate the inner workings of this with the so-called “cat states”, which are of fundamental interest and practical use in schemes such as quantum metrology. Salient issues, including the extension of the notion of entropy power to Tsallis entropy and ensuing implications in estimation theory, are also briefly discussed.  相似文献   

5.
6.
Julian Schwinger’s influence on twentieth-century science is profound and pervasive. He is most famous for his renormalization theory of quantum electrodynamics, for which he shared the Nobel Prize in Physics for 1965 with Richard Feynman and Sin-itiro Tomonaga. This triumph undoubtedly was his most heroic work, but his legacy lives on chiefly through subtle and elegant work in classical electrodynamics, quantum variational principles, proper-time methods, quantum anomalies, dynamical mass generation, partial symmetry, and much more. Starting as just a boy, he rapidly became one of the preeminent nuclear physicists in the world in the late 1930s, led the theoretical development of radar technology at the Massachusetts Institute of Technology during World War II, and soon after the war conquered quantum electrodynamics, becoming the leading quantum-field theorist for two decades, before taking a more iconoclastic route during the last quarter century of his life.  相似文献   

7.
The thin‐layer quantization procedure is used to study the physical implications due to curvature effects on a quantum dot in the presence of an external magnetic field. Among the various physical implications due to the curvature of the system, the absence of the m = 0 state is the most relevant one. This absence affects the Fermi energy and consequently the thermodynamic properties of the system. In the absence of magnetic fields, it is verified that the rotational symmetry in the lateral confinement is preserved in the electronic states of the system and its degeneracy concerning the harmonicity of the confining potential is broken. In the presence of a magnetic field, however, the energies of the electronic states in a quantum dot with curvature are greater than those obtained for a quantum dot in a flat space, and the profile of degeneracy changes when the field is varied. It is shown that the curvature of the surface modifies the number of subbands occupied in the Fermi energy. In the study of both magnetization and persistent currents, it is observed that Aharonov–Bohm‐type oscillations are present, whereas de Haas–van Alphen‐type oscillations are not well defined.  相似文献   

8.
The anisotropic Bianchi I cosmological model coupled with perfect fluid is quantized in the minisuperspace. The perfect fluid is described by using the Schutz formalism which allows to attribute dynamical degrees of freedom to matter. A Schrödinger-type equation is obtained where the matter variables play the role of time. However, the signature of the kinetic term is hyperbolic. This Schrödinger-like equation is solved and a wave packet is constructed. The norm of the resulting wave function comes out to be time dependent, indicating the loss of unitarity in this model. The loss of unitarity is due to the fact that the effective Hamiltonian is hermitian but not self-adjoint. The expectation value and the bohmian trajectories are evaluated leading to different cosmological scenarios, what is a consequence of the absence of a unitary quantum structure. The consistency of this quantum model is discussed as well as the generality of the absence of unitarity in anisotropic quantum models.  相似文献   

9.
Here, a protocol for robust preparation of an atomic concatenated Greenberger–Horne–Zeilinger (C‐GHZ) state via shortcuts to adiabaticity (STA) is proposed. The devices for implementing the protocol consist of atoms, cavities, and the optical fibers, which are feasible with current technology. The atoms are trapped in the separated cavities allowing individual control over each atom with classical fields. STA helps to design Rabi frequencies of classical fields so that the atoms can be driven from the initial states to the target states. The numerical simulations show that the protocol holds robustness against atomic spontaneous emissions and photonic leakages. Thus, the protocol may be realized by experiments in the near future.  相似文献   

10.
We discuss the stability of semiclassical gravity solutions with respect to small quantum corrections by considering the quantum fluctuations of the metric perturbations around the semiclassical solution. We call the attention to the role played by the symmetrized 2-point quantum correlation function for the metric perturbations, which can be naturally decomposed into two separate contributions: intrinsic and induced fluctuations. We show that traditional criteria on the stability of semiclassical gravity are incomplete because these criteria based on the linearized semiclassical Einstein equation can only provide information on the expectation value and the intrinsic fluctuations of the metric perturbations. By contrast, the framework of stochastic semiclassical gravity provides a more complete and accurate criterion because it contains information on the induced fluctuations as well. The Einstein–Langevin equation therein contains a stochastic source characterized by the noise kernel (the symmetrized 2-point quantum correlation function of the stress tensor operator) and yields stochastic correlation functions for the metric perturbations which agree, to leading order in the large N limit, with the quantum correlation functions of the theory of gravity interacting with N matter fields. These points are illustrated with the example of Minkowski space-time as a solution to the semiclassical Einstein equation, which is found to be stable under both intrinsic and induced fluctuations.  相似文献   

11.
The dynamics of weakly coupled, non-abelian gauge fields at high temperature is non-perturbative if the characteristic momentum scale is of order |k|g2T. Such a situation is typical for the processes of electroweak baryon number violation in the early Universe. Bödeker has derived an effective theory that describes the dynamics of the soft field modes by means of a Langevin equation. This effective theory has been used for lattice calculations so far [G.D. Moore, Nucl. Phys. B568 (2000) 367. Available from: <hep-ph/9810313>; G.D. Moore, Phys. Rev. D62 (2000) 085011. Available from: <hep-ph/0001216>]. In this work we provide a complementary, more analytic approach based on Dyson–Schwinger equations. Using methods known from stochastic quantitation, we recast Bödeker’s Langevin equation in the form of a field theoretic path integral. We introduce gauge ghosts in order to help control possible gauge artefacts that might appear after truncation, and which leads to a BRST symmetric formulation and to corresponding Ward identities. A second set of Ward identities, reflecting the origin of the theory in a stochastic differential equation, is also obtained. Finally, Dyson–Schwinger equations are derived.  相似文献   

12.
13.
We review the algebraic structures imposed on the renormalization procedure in terms of Hopf and Lie algebras of Feynman graphs, and exhibit the connection to diffeomorphisms of physical observables.  相似文献   

14.
We study the Cauchy problem for the Whitham modulation equations for increasing smooth initial data. The Whitham equations are a collection of one-dimensional quasi-linear hyperbolic systems. This collection of systems is enumerated by the genus g=0,1,2, ... of the corresponding hyperelliptic Riemann surface. Each of these systems can be integrated by the so-called hodograph transformation introduced by Tsarev. A key step in the integration process is the solution of the Tsarev linear overdetermined system. For each g>0, we construct the unique solution of the Tsarev system, which matches the genus g+1 and g–1 solutions on the transition boundaries.  相似文献   

15.
It is shown how the essentials of quantum theory, i.e., the Schrödinger equation and the Heisenberg uncertainty relations, can be derived from classical physics. Next to the empirically grounded quantisation of energy and momentum, the only input is given by the assumption of fluctuations in energy and momentum to be added to the classical motion. Extending into the relativistic regime for spinless particles, this procedure leads also to a derivation of the Klein-Gordon equation. Comparing classical Hamiltonian flow with quantum theory, then, the essential difference is given by a vanishing divergence of the velocity of the probability current in the former, whereas the latter results from a much less stringent requirement, i.e., that only the average over fluctuations and positions on the average divergence be identical to zero.  相似文献   

16.
A fully quantum mechanical approach to the calculation and normalization of the Franck–Condon factors for diatomic species is described. The treatment is based on the fundamental demand of completeness of the energy eigenfunctions, which results in the rigorous sum rule for the Franck–Condon overlap integrals. The importance of this general rule has been discussed and thoroughly illustrated in the case of diatomic xenon molecules. Exactly solvable reference potentials for this system have been constructed and a complete basis of the actual energy eigenstates (including both bound and scattering states) has been created. Several direct spectroscopic applications to xenon excimers are presented, and their good agreement with relevant experimental data demonstrated. In particular, a kinetic model is proposed to explain the observed oscillatory structures in the fluorescence spectra of Xe2* [Chem. Phys. Lett. 117 (1985) 301] related to their classical left turning points. The same model gives a uniform explanation to the well-known first and second emission continua of rare gases.  相似文献   

17.
Density functional theory computations at B3LYP and X3LYP levels were performed for ring openings of substituted gem‐dibromospiropentanes (R = ―H, ―Cl, ―Br, ―CH3, ―SiH3, ―OH, ―OCH3, ―CF3, ―BF2, and ―SH) to related allenes. The conversion of spiropentanoids 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j to the corresponding allenes 7a , 7b , 7c , 7d , 7e , 7f , 7g , 7h , 7i , 7j can proceed in both concerted and stepwise mechanism except for R = ―H. Both ring‐opening mechanisms have similar activation energy barriers to open the spiropentanylidene ring and generate the structure of allene at all theoretical levels used herein. Generally the π electron‐donating group (―OH or ―SH) decreases the activation barrier for the follow‐up reaction of 1‐bromo‐1‐lithiospiropentanoid and free spiropentanylidene. Hence, both bearing electron‐donating substituents are more reactive than those with electron‐withdrawing group, and the first one to open the ring to the LiBr–allene complex does so more readily than the second. The sEDA index used to measure sigma‐electron excess/deficiency of the cyclopropylidene ring is mutually correlated for the studied systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
The idea of a canonical ensemble from Gibbs has been extended by Jean-Marie Souriau for a symplectic manifold where a Lie group has a Hamiltonian action. A novel symplectic thermodynamics and information geometry known as “Lie group thermodynamics” then explains foliation structures of thermodynamics. We then infer a geometric structure for heat equation from this archetypal model, and we have discovered a pure geometric structure of entropy, which characterizes entropy in coadjoint representation as an invariant Casimir function. The coadjoint orbits form the level sets on the entropy. By using the KKS 2-form in the affine case via Souriau’s cocycle, the method also enables the Fisher metric from information geometry for Lie groups. The fact that transverse dynamics to these symplectic leaves is dissipative, whilst dynamics along these symplectic leaves characterize non-dissipative phenomenon, can be used to interpret this Lie group thermodynamics within the context of an open system out of thermodynamics equilibrium. In the following section, we will discuss the dissipative symplectic model of heat and information through the Poisson transverse structure to the symplectic leaf of coadjoint orbits, which is based on the metriplectic bracket, which guarantees conservation of energy and non-decrease of entropy. Baptiste Coquinot recently developed a new foundation theory for dissipative brackets by taking a broad perspective from non-equilibrium thermodynamics. He did this by first considering more natural variables for building the bracket used in metriplectic flow and then by presenting a methodical approach to the development of the theory. By deriving a generic dissipative bracket from fundamental thermodynamic first principles, Baptiste Coquinot demonstrates that brackets for the dissipative part are entirely natural, just as Poisson brackets for the non-dissipative part are canonical for Hamiltonian dynamics. We shall investigate how the theory of dissipative brackets introduced by Paul Dirac for limited Hamiltonian systems relates to transverse structure. We shall investigate an alternative method to the metriplectic method based on Michel Saint Germain’s PhD research on the transverse Poisson structure. We will examine an alternative method to the metriplectic method based on the transverse Poisson structure, which Michel Saint-Germain studied for his PhD and was motivated by the key works of Fokko du Cloux. In continuation of Saint-Germain’s works, Hervé Sabourin highlights the, for transverse Poisson structures, polynomial nature to nilpotent adjoint orbits and demonstrated that the Casimir functions of the transverse Poisson structure that result from restriction to the Lie–Poisson structure transverse slice are Casimir functions independent of the transverse Poisson structure. He also demonstrated that, on the transverse slice, two polynomial Poisson structures to the symplectic leaf appear that have Casimir functions. The dissipative equation introduced by Lindblad, from the Hamiltonian Liouville equation operating on the quantum density matrix, will be applied to illustrate these previous models. For the Lindblad operator, the dissipative component has been described as the relative entropy gradient and the maximum entropy principle by Öttinger. It has been observed then that the Lindblad equation is a linear approximation of the metriplectic equation.  相似文献   

19.
A new method for heteronuclear X-filtering is presented, which relies on repetitive applications of 90 degrees (1H)-tau(1/41J(HC))-180 degrees (1H,13C)-tau(1/41J(HC))-90 degrees (1H,13C)-PFG building blocks employing gradient-mediated suppression of magnetization built up for directly heteronuclear coupled protons. Thereby, a range of heteronuclear coupling constants can be suppressed by varying the delays of scalar coupling evolution both within and between individual transients. To achieve efficient destruction of 13C-coupled protons in macromolecular systems, the scalar coupling evolution delays were optimized using simulated annealing by including transverse relaxation effects. With a combination of regular hard pulses, delays and pulsed field gradients only, this method yields sufficient X-filtering to allow the observation of intermolecular nuclear overhauser effects in a molecular complex consisting of a 13C, 15N double-labeled, and an unlabeled protein. This is achieved by exciting magnetization of 12C- and 14N-bound protons and detecting 13C-bound 1H magnetization in a 3D 13C-filtered, 13C-edited NOESY-HSQC experiment. The method is tested on the 18 kDa homodimeric bacterial antidote ParD.  相似文献   

20.
A simple procedure of 1D nanotubes (NT) construction based on the supercell of 2D (1 0 1) slab rolling and subsequent cylindrical coordinate system introduction is suggested. This procedure is applicable for any of five 2D lattices as well as both single- and multi-wall nanotubes provided that the chirality and translation vectors orthogonality condition is satisfied. The procedure suggested is applied to the centered rectangular 2D lattice, formed by (1 0 1) sheet of the bulk anatase. It is shown that (n, 0) and (0, m) nanotubes can be constructed by rolling an anatase (1 0 1) sheet along the and [0 1 0] directions respectively. The orthogonal to chirality vector translation vector does not exist for n ≠ m ≠ 0 general case. The first principles LCAO calculations of (n, 0) and (0, m) NT’s are made with hybrid HF/KS (PBE0) exchange-correlation functional for systems containing up to 180 atoms (n = 6, 9, 12, 15; m = 3−6). It is demonstrated that the energy band gap increases (from 4.7 to 5.4 eV) when the NT radius changes from 3.61 to 9.92 Å. The strain energy is larger for (n, 0) than for (0, m) nanotubes of a similar radius. The changes of the unit cell periodicity and radius of titania nanotubes after the structure optimization are negligible, however the atomic relaxations are noticeable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号