首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider the constrained vector optimization problem min C f(x), g(x) ∈ ?K, where f:? n →? m and g:? n →? p are C 1,1 functions, and C ? m and K ? p are closed convex cones with nonempty interiors. Two type of solutions are important for our considerations, namely w-minimizers (weakly efficient points) and i-minimizers (isolated minimizers). We formulate and prove in terms of the Dini directional derivative second-order necessary conditions for a point x 0 to be a w-minimizer and second-order sufficient conditions for x 0 to be an i-minimizer of order two. We discuss the reversal of the sufficient conditions under suitable constraint qualifications of Kuhn-Tucker type. The obtained results improve the ones in Liu, Neittaanmäki, K?í?ek [21].  相似文献   

2.
A general theorem (principle of a priori boundedness) on solvability of the boundary value problem dx = dA(t) · f(t, x), h(x) = 0 is established, where f: [a, b]×R n → R n is a vector-function belonging to the Carathéodory class corresponding to the matrix-function A: [a, b] → R n×n with bounded total variation components, and h: BVs([a, b],R n ) → R n is a continuous operator. Basing on the mentioned principle of a priori boundedness, effective criteria are obtained for the solvability of the system under the condition x(t1(x)) = B(x) · x(t 2(x))+c 0, where t i: BVs([a, b],R n ) → [a, b] (i = 1, 2) and B: BVs([a, b], R n ) → R n are continuous operators, and c 0 ∈ R n .  相似文献   

3.
It is shown that if P m α,β (x) (α, β > ?1, m = 0, 1, 2, …) are the classical Jaboci polynomials, then the system of polynomials of two variables {Ψ mn α,β (x, y)} m,n=0 r = {P m α,β (x)P n α,β (y)} m, n=0 r (r = m + nN ? 1) is an orthogonal system on the set Ω N×N = ?ub;(x i , y i ) i,j=0 N , where x i and y i are the zeros of the Jacobi polynomial P n α,β (x). Given an arbitrary continuous function f(x, y) on the square [?1, 1]2, we construct the discrete partial Fourier-Jacobi sums of the rectangular type S m, n, N α,β (f; x, y) by the orthogonal system introduced above. We prove that the order of the Lebesgue constants ∥S m, n, N α,β ∥ of the discrete sums S m, n, N α,β (f; x, y) for ?1/2 < α, β < 1/2, m + nN ? 1 is O((mn) q + 1/2), where q = max?ub;α,β?ub;. As a consequence of this result, several approximate properties of the discrete sums S m, n, N α,β (f; x, y) are considered.  相似文献   

4.
In this paper we prove the following result. Let m ≥ 1, n ≥ 1 be fixed integers and let R be a prime ring with m + n + 1 ≤ char(R) or char(R) = 0. Suppose there exists an additive nonzero mapping D : RR satisfying the relation 2D(x n+m+1) = (m + n + 1)(x m D(x)x n + x n D(x)x m ) for all \({x\in R}\). In this case R is commutative and D is a derivation.  相似文献   

5.
Let T t : XX be a C 0-semigroup with generator A. We prove that if the abscissa of uniform boundedness of the resolvent s 0(A) is greater than zero then for each nondecreasing function h(s): ?+R + there are x′X′ and xX satisfying ∫ 0 h(|〈x′, T x x〉|)dt = ∞. If i? ∩ Sp(A) ≠ Ø then such x may be taken in D(A ).  相似文献   

6.
This paper concerns families of constrained differential systems having the form {fx1-1} where h: ? n → ? is a C r -function, (α 1, …, α n ) is a C r vector field on ? n , r ≥ 1, x ∈ ? n and λ is a real parameter. Using singular perturbation techniques we present some results on the dynamics of the system around a point (x, λ) of the impasse set λ = h(x). In addition, planar constrained systems with non-regular impasse surfaces are considered.  相似文献   

7.
Let IK be an algebraically closed field of characteristic 0 complete for an ultrametric absolute value. Following results obtained in complex analysis, here we examine problems of uniqueness for meromorphic functions having finitely many poles, sharing points or a pair of sets (C.M. or I.M.) defined either in the whole field IK or in an open disk, or in the complement of an open disk. Following previous works in C, we consider functions fn(x)fm(ax + b), gn(x)gm(ax + b) with |a| = 1 and nm, sharing a rational function and we show that f/g is a n + m-th root of 1 whenever n + m ≥ 5. Next, given a small function w, if n, m ∈ IN are such that |n ? m| ≥ 5, then fn(x)fm(ax + b) ? w has infinitely many zeros. Finally, we examine branched values for meromorphic functions fn(x)fm(ax + b).  相似文献   

8.
The best constant C n,m in the Jackson-Nikol’skii inequality between the uniform and integral norms of algebraic polynomials of a given total degree n ≥ 0 on the unit sphere \(\mathbb{S}^{m - 1} \) of the Euclidean space ? m is studied. Two-sided estimates for the constant C n,m are obtained, which, in particular, give the order n m?1 of its behavior with respect to n as n → +∞ for a fixed m.  相似文献   

9.
Let m,m′, n be positive integers such that mm′. Let A be an mth order n-dimensional tensor, and let ? be an m′th order n-dimensional tensor. λ ∈ ? is called a ?-eigenvalue of A if A xm?1 = λ?xm′?1 and ?xm′= 1 for some x ∈ ?n\{0}. In this paper, we propose a linear homotopy method for solving this eigenproblem. We prove that the method finds all isolated ?-eigenpairs. Moreover, it is easy to implement. Numerical results are provided to show the efficiency of the proposed method.  相似文献   

10.
In this paper, we will present a CR-construction of the versal deformations of the singularitiesV n ? ?2/? n ,n ∈ {2,3,4,?} defined by the immersions of ?2 into ? n+1 X n : (z, w) → (z n ,z n?1 w, ?,zw n?1 ,w n )  相似文献   

11.
Let μ be a nonnegative Radon measure on ? d which only satisfies μ (B(x, r)) ? C 0 r n for all x ∈ ? d , r > 0, with some fixed constants C 0 > 0 and n ∈ (0, d]. In this paper, a new characterization for the space RBMO(μ) of Tolsa in terms of the John-Strömberg sharp maximal function is established.  相似文献   

12.
Every automaton (a letter-to-letter transducer) A whose both input and output alphabets are F p = {0, 1,..., p - 1} produces a 1-Lipschitz map f A from the space Z p of p-adic integers to Z p . The map fA can naturally be plotted in a unit real square I2 ? R2: To an m-letter non-empty word v = γ m-1γ m-2... γ0 there corresponds a number 0.v ∈ R with base-p expansion 0.γ m-1γ m-2... γ0; so to every m-letter input word w = α m-1α m-2 ··· α0 of A and to the respective m-letter output word a(w) = β m-1β m-2 ··· β0 of A there corresponds a point (0.w; 0.a(w)) ∈ R2. Denote P(A) a closure of the point set (0.w; 0.a(w)) where w ranges over all non-empty words.We prove that once some points of P(A) constitute a C 2-smooth curve in R2, the curve is a segment of a straight line with a rational slope. Moreover, when identifying P(A) with a subset of a 2-dimensional torus T2 ∈ R3, the smooth curves from P(A) constitute a collection of torus windings which can be ascribed to complex-valued functions ψ(x, t) = e i(Ax-2πBt) (x, t ∈ R), i.e., to matter waves. As automata are causal discrete systems, the main result may serve a mathematical reasoning why wave phenomena are inherent in quantum systems: This is just because of causality principle and discreteness of matter.  相似文献   

13.
We obtain in a sense optimal tests for the solvability of the nonlinear boundary value problem
$$\frac{{dx}}{{dt}} = f(t,x),x(a) = h(x,(b)),$$
where the function f: [a, b] × ? n → ? n belongs to the Carathéodory class and the function h: ? n → ? n is continuous.
  相似文献   

14.
Let (j1,..., jn) be a permutation of the n-tuple (1, ..., n). A system of differential equations \(\dot x = {f_i}\left( {{x_{{j_i}}}} \right),i = 1, \ldots ,n\) in which each function fi is continuous on ? is considered. This system is said to have the property of generation of solutions with a small period if, for any number M > 0, there exists a number ω0 = ω0(M) > 0 such that if 0 < ω ≤ ω0 and hi(t, x1, ..., xn) are continuous functions on ? × ?n ω-periodic in t that satisfy the inequalities |hi| ≤ M the system \(\dot x = {f_i}\left( {{x_{{j_i}}}} \right),i = 1, \ldots ,n\) has an ω-periodic solution. It is shown that a system has the property of generation of solutions with a small period if and only if fi(?) = ? for i = 1,..., n. It is also shown that the smallness condition on the period is essential.  相似文献   

15.
We investigate the nonnegative solutions of the system involving the fractional Laplacian:
$$\left\{ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {( - \Delta )^\alpha u_i (x) = f_i (u),} & {x \in \mathbb{R}^n , i = 1,2, \ldots ,m,} \\ \end{array} } \\ {u(x) = (u_1 (x),u_2 (x), \ldots ,u_m (x)),} \\ \end{array} } \right.$$
where 0 < α < 1, n > 2, f i (u), 1 ≤ im, are real-valued nonnegative functions of homogeneous degree p i ≥ 0 and nondecreasing with respect to the independent variables u 1, u 2,..., u m . By the method of moving planes, we show that under the above conditions, all the positive solutions are radially symmetric and monotone decreasing about some point x 0 if p i = (n + 2α)/(n ? 2α) for each 1 ≤ im; and the only nonnegative solution of this system is u ≡ 0 if 1 < p i < (n + 2α)/(n ? 2α) for all 1 ≤ im.
  相似文献   

16.
Functional equations of the form f(x + y)g(x ? y) = Σ j=1 n α j (x)β j (y) as well as of the form f1(x + z)f2(y + z)f3(x + y ? z) = Σ j=1 m φ j (x, y)ψ j (z) are solved for unknown entire functions f, g j , β j : ? → ? and f1, f2, f3, ψ j : ? → ?, φ j : ?2 → ? in the cases of n = 3 and m = 4.  相似文献   

17.
For an immersed submanifold x : M^m→ Sn in the unit sphere S^n without umbilics, an eigenvalue of the Blaschke tensor of x is called a Blaschke eigenvalue of x. It is interesting to determine all hypersurfaces in Sn with constant Blaschke eigenvalues. In this paper, we are able to classify all immersed hypersurfaces in S^m+1 with vanishing MSbius form and constant Blaschke eigenvalues, in case (1) x has exact two distinct Blaschke eigenvalues, or (2) m = 3. With these classifications, some interesting examples are also presented.  相似文献   

18.
We construct a bi-Lipschitz bijection from the Boolean cube to the Hamming ball of equal volume. More precisely, we show that for all even n ∈ N there exists an explicit bijection ψ: {0, 1}n → {x ∈ {0, 1}n+1 : |x| > n/2} such that for every xy ∈ {0, 1}n, \(\frac{1}{5} \leqslant \frac{{dis\tan ce\left( {\psi \left( x \right),\psi \left( y \right)} \right)}}{{dis\tan ce\left( {x,y} \right)}} \leqslant 4,\) where distance(·, ·) denotes the Hamming distance. In particular, this implies that the Hamming ball is bi-Lipschitz transitive.  相似文献   

19.
In this paper, we investigate the following problem: give a quasi-Boolean function Ψ(x 1, …, x n ) = (aC) ∨ (a 1C 1) ∨ … ∨ (a p C p ), the term (aC) can be deleted from Ψ(x 1, …, x n )? i.e., (aC) ∨ (a 1C 1) ∨ … ∨ (a p C p ) = (a 1C 1) ∨ … ∨ (a p C p )? When a = 1: we divide our discussion into two cases. (1) ?1(Ψ,C) = ø, C can not be deleted; ?1(Ψ,C) ≠ ø, if S i 0 ≠ ø (1 ≤ iq), then C can not be deleted, otherwise C can be deleted. When a = m: we prove the following results: (mC)∨(a 1C 1)∨…∨(a p C p ) = (a 1C 1)∨…∨(a p C p ) ? (mC) ∨ C 1 ∨ … ∨C p = C 1 ∨ … ∨C p . Two possible cases are listed as follows, (1) ?2(Ψ,C) = ø, the term (mC) can not be deleted; (2) ?2(Ψ,C) ≠ ø, if (?i 0) such that \(S'_{i_0 } \) = ø, then (mC) can be deleted, otherwise ((mC)∨C 1∨…∨C q )(v 1, …, v n ) = (C 1 ∨ … ∨ C q )(v 1, …, v n )(?(v 1, …, v n ) ∈ L 3 n ) ? (C 1 ∨ … ∨ C q )(u 1, …, u q ) = 1(?(u 1, …, u q ) ∈ B 2 n ).  相似文献   

20.
Let (M m , T) be a smooth involution on a closed smooth m-dimensional manifold and F = ∪ j=0 n F j (nm) its fixed point set, where F j denotes the union of those components of F having dimension j. The famous Five Halves Theorem of J. Boardman, announced in 1967, establishes that, if F is nonbounding, then m ≤ 5/2n. In this paper we obtain an improvement of the Five Halves Theorem when the top dimensional component of F, F n , is nonbounding. Specifically, let ω = (i 1, i 2, …, i r ) be a non-dyadic partition of n and s ω (x 1, x 2, …, x n ) the smallest symmetric polynomial over Z 2 on degree one variables x 1, x 2, …, x n containing the monomial \(x_1^{i_1 } x_2^{i_2 } \cdots x_r^{i_r }\). Write s ω (F n ) ∈ H n (F n , Z 2) for the usual cohomology class corresponding to s ω (x 1, x 2, …, x n ), and denote by ?(F n ) the minimum length of a nondyadic partition ω with s ω (F n ) ≠ 0 (here, the length of ω = (i 1, i 2, …, i r ) is r). We will prove that, if (M m , T) is an involution for which the top dimensional component of the fixed point set, F n , is nonbounding, then m ≤ 2n + ?(F n ); roughly speaking, the bound for m depends on the degree of decomposability of the top dimensional component of the fixed point set. Further, we will give examples to show that this bound is best possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号