首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Laser surface melting (LSM) is known to enhance the wear and corrosion resistance of Mg alloys, but its effect on microstructural evolution of Mg alloys is not well understood. An effort has been made to study the effect of rapid solidification following LSM on the microstructural evolution of AZ91D Mg alloy. The results of X-ray diffractometry, scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray spectroscopy indicated that the solidification microstructure in the laser-melted zone was mainly cellular/dendrite structure of primarily α-Mg phase and continuous network of β-Mg17Al12 phase. Numerical prediction of the laser-melted zone suggested that cooling rates increased strongly from the bottom to the top surface in the irradiated regions. An attempt has been made to correlate dendrite cell sizes of the solidification microstructure with the cooling rates in the laser-treated AZ91D Mg alloy.  相似文献   

2.
Broad-beam laser cladding of Al-Cu alloy coating on AZ91HP magnesium alloy   总被引:3,自引:0,他引:3  
The resistance to wear and corrosion of AZ91HP Mg alloy was improved by laser cladding Al-Cu alloy. It was found that the clad layer was characterized by AlCu4 and Mg17Al12 grains embedded in a AlMg matrix. The bonding zone exhibited a white-light planar crystal band with thickness of 10-13 μm. The heat-affected zone formed a eutectic structure due to the Mg diffusion. The microhardness and wear resistance of the coating were improved due to the formation of the hard phases AlCu4 and Mg17Al12. Owing to the formation of dense Al2O3 oxide film, the coating exhibited better corrosion resistance in 3.5 wt.% NaCl solution.  相似文献   

3.
In the study, samples of AZ91 magnesium alloy were subjected to a surface remelting treatment by means of a continuous wave (cw) CO2 laser. The scope of the investigation included both macro- and microstructural examination, hardness measurements, and wear resistance tests. The investigation has shown that remelting treatment leads to a strong refinement of structure in the surface layer and a more even distribution of phases. Fine α-phase dendrites have been observed to dominate in the remelting zone. The dendritic arm spacing in the laser treated surface was in the range of 1–2.5 μm. The structural changes triggered by remelting have contributed to an increase in the hardness and the wear resistance of AZ91 alloy. The microhardness of the remelted zone has increased to 71–93 HV0.05 for single-strip remelting and to 84–107 HV0.05 for multi-strip remelting in comparison with about ~60 HV0.05 for untreated alloy. The friction coefficient has decreased from 0.375 for material w/o treatment to 0.311 for remelted material. SEM investigations of samples after tribological tests have revealed the presence of parallel grooves proving the occurrence of microploughing and micro cutting of the material during the tribological testing. The results of the conducted investigation have indicated a beneficial influence of the cw-CO2 laser remelting treatment on the structure and properties of AZ91 alloy.  相似文献   

4.
Electroless deposition of Ni-W-P coating on AZ91D magnesium alloy   总被引:1,自引:0,他引:1  
Ternary Ni-W-P alloy coating was deposited directly on AZ91D magnesium alloy by using an alkaline-citrate-based baths. Nickel sulfate and sodium tungstate were used as metal ion sources, respectively, and sodium hypophosphite was used as a reducing agent. The pH value of the electroless bath was tailored for magnesium alloy. The coating was characterized for its structure, morphology, microhardness and the corrosion properties. SEM observation showed the presence of dense and coarse nodules in the ternary coating. EDS analysis showed that the content of tungsten in the Ni-W-P alloy was 4.5 wt.%. Both the electrochemical analysis and the immersion test in 10% HCl solution revealed that the ternary Ni-W-P coating exhibited good corrosion resistance properties in protecting the AZ91D magnesium alloy.  相似文献   

5.
Oxide formation on a clean AZ91-Mg alloy surface has been characterized by X-ray photoelectron spectroscopy (XPS), while the chemical composition of a mirror-polished sample was assessed by scanning Auger microscopy (SAM) and scanning electron microscopy (SEM) at different microstructural regions, referred to as the grain boundary, matrix and particle regions. XPS and SAM confirmed that Mg and Al are always present in the surface regions probed, whereas bulk characterization with energy dispersive X-ray (EDX) analysis was necessary to detect the additional alloying elements, Mn and Zn. Coating by 1% solutions of BTSE, γ-GPS and γ-APS at their natural pH values gave etching of the surface Mg oxide. Adsorption occurs on the different regions, but the attachment is weak, especially because of the fragile nature of the underlying substrate. However, increasing the concentration of BTSE to 4% formed a thicker and denser coating with better prospects for substrate protection.  相似文献   

6.
Ceramic coatings oxidized for different time periods were prepared to characterize the plasma electrolytic oxidation (PEO) process of AZ91D magnesium alloy. The coatings were analyzed using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscope and potentiodynamic polarization measurement. The results show that the PEO coatings perform different growth behaviors at different PEO stages, and different morphologies are exhibited on α- and β-phase of Mg substrate. The corrosion resistance measurement predicates that within the first 30 min oxidation, coating oxidized for 20 min is the best corrosion resistant.  相似文献   

7.
The influence of the surface roughness of Mg alloys on the electrical properties and corrosion resistance of oxide layers obtained by plasma electrolytic oxidation (PEO) were studied. The leakage current in the insulating oxide layer was enhanced by increasing the surface roughness, which is a favorable characteristic for the material when applied to hand-held electronic devices. The variation of corrosion resistance with surface roughness was also investigated. The corrosion resistance was degraded by the increasing surface roughness, which was confirmed with DC polarization and impedance spectroscopy. Pitting corrosion on the passive oxide layer was also analyzed with a salt spray test, which showed that the number of pits was not affected by the surface roughness when the spray time reached 96 h.  相似文献   

8.
X-ray photoelectron spectroscopy (XPS) was used in order to investigate the correlation between the surface chemistry and the atmospheric corrosion of AZ31, AZ80 and AZ91D magnesium alloys exposed to 98% relative humidity at 50 °C. Commercially pure magnesium, used as the reference material, revealed MgO, Mg(OH)2 and tracers of magnesium carbonate in the air-formed film. For the AZ80 and AZ91D alloys, the amount of magnesium carbonate formed on the surface reached similar values to those of MgO and Mg(OH)2. A linear relation between the amount of magnesium carbonate formed on the surface and the subsequent corrosion behaviour in the humid environment was found. The AZ80 alloy revealed the highest amount of magnesium carbonate in the air-formed film and the highest atmospheric corrosion resistance, even higher than the AZ91D alloy, indicating that aluminium distribution in the alloy microstructure influenced the amount of magnesium carbonate formed.  相似文献   

9.
High corrosion resistance Cu/Ni-P coatings were electrodeposited on AZ91D magnesium alloy via suitable pretreatments, such as one-step acid pickling-activation, once zinc immersion and environment-friendly electroplated copper as the protective under-layer, which made Ni-P deposit on AZ91D Mg alloy in acid plating baths successfully. The pH value and current density for Ni-P electrodeposition were optimized to obtain high corrosion resistance. With increasing the phosphorous content of the Ni-P coatings, the deposits were found to gradually transform to amorphous structure and the corrosion resistance increased synchronously. The anticorrosion ability of AZ91D Mg alloy was greatly improved by the amorphous Ni-P deposits, which was investigated by potentiodynamic polarization curve and electrochemical impedance spectroscopy (EIS). The corrosion current density (Icorr) of the coated Mg alloy substrate is about two orders of magnitude less than that of the uncoated.  相似文献   

10.
Self-assembled monolayer (SAM) was successfully adsorbed on the AZ31 Mg alloy surface using oleic acid and stearic acid with various organic solvents, such as acetone, ethanol, and hexane. The surface monolayers were characterized using contact angle measurements, X-ray photoelectron spectroscopy (XPS) and anodic polarization test. It was shown that the higher contact angle and the best anti-corrosion property were obtained with treatment in oleic acid with ethanol solution.  相似文献   

11.
The magnesium has some excellent properties such as ligh quality, high specific strength and stiffness, high damp and reeoverd easily compared with steel, aluminium, engineering plastic. So the application and exploitation of magnesium arose extensive attention of the public.  相似文献   

12.
用X射线衍射谱分析了Mg2B2O5w/AZ91D镁基复合材料中的物相。研究了固溶处理和时效处理以及固溶处理加人工时效处理对复合材料组织演变的影响及组织与显微硬度之间的关系。结果表明,经过固溶处理后,共晶相的分解使复合材料的硬度值明显下降。时效处理使得复合材料的硬度逐渐增加并在时效处理16h后出现时效峰值201HV。然而随着时效时间的进一步增加,显微硬度值降低。经固溶处理24h,基体中β相基本溶解,形成过饱和的固溶体,接着时效处理8h,β相以弥散形式析出,从而使得复合材料的显微硬度值提高30%;而固溶处理24h及时效处理24h后,β析出相由细小片状的连续析出相向粗大的层片状非连续析出相过渡,使得复合材料的显微硬度下降到183HV。  相似文献   

13.
The effect of zinc immersion and the role of fluoride in nickel plating bath were mainly investigated in nickel electroplating on magnesium alloy AZ91D. The state of zinc immersion, the composition of zinc film and the role of fluoride in nickel plating bath were explored from the curves of open circuit potential (OCP) and potentiodynamic polarization, the images of scanning electron microscopy (SEM) and the patterns of energy dispersive X-ray (EDX). Results show that the optimum zinc film mixing small amount of Mg(OH)2 and MgF2 is obtained by zinc immersion for 30-90 s. The corrosion potential of magnesium alloy substrate attached zinc film will be increased in nickel plating bath and the quantity of MgF2 sandwiched between magnesium alloy substrate and nickel coating will be reduced, which contributed to produce nickel coating with good performance. Fluoride in nickel plating bath serves as an activator of nickel anodic dissolution and corrosion inhibitor of magnesium alloy substrate. 1.0-1.5 mol dm−3 of F is the optimum concentration range for dissolving nickel anode and protecting magnesium alloy substrate from over-corrosion in nickel plating bath. The nickel coating with good adhesion and high corrosion resistance on magnesium alloy AZ91D is obtained by the developed process of nickel electroplating. This nickel layer can be used as the rendering coating for further plating on magnesium alloys.  相似文献   

14.
Influence of heat treatment regime on adhesion and wear resistance of Ni-P electroless coating on AZ91 magnesium alloy is investigated in this work. The pretreated substrate was plated using a bath containing nickel sulphate, sodium hypophosphite and sodium acetate as main constituents. The coated samples were heat treated at 400-450 °C for 1-8 h. Adhesion of coating was estimated from the scratch test with an initial load of 8.80 N. Wear resistance was studied using the pin-on-disc method. It was found that there is no significant dependence of the coating wear resistance on heat treatment regime, as the formation of Al-Ni intermetallic sub-layers that reduce coating adhesion is limited to regions where Al17Mg12 phase is present in the substrate. Moreover, the coating shows good sliding properties due to the formation of oxide glazes in the wear track.  相似文献   

15.
Anodic films have been prepared on the AZ91D magnesium alloys in 1 mol/L Na2SiO3 with 10 vol.% silica sol addition under the constant voltage of 60 V at room temperature by half-wave and full-wave power sources. The weight of the anodic films has been scaled by analytical balance, and the thickness has been measured by eddy current instrument. The surface morphologies, chemical composition and structure of the anodic films have been characterized by scanning electron microscopy (SEM), energy dispersion spectrometry (EDS), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the thickness and weight of the anodic films formed by the two power sources both increase with the anodizing time, and the films anodized by full-wave power source grow faster than that by half-wave one. Furthermore, we have fitted polynomial to the scattered data of the weight and thickness in a least-squares sense with MATLAB, which could express the growth process of the anodic films sufficiently. The full-wave power source is inclined to accelerate the growth of the anodic films, and the half-wave one is mainly contributed to the uniformity and fineness of the films. The anodic film consists of crystalline Mg2SiO4 and amorphous SiO2.  相似文献   

16.
Laser surface melting of high chrome steels was achieved by a 5 kW continuous wave CO2 laser. The microstructure of the laser surface-melted steels was investigated by scanning electron microscopy, transmission electron microscopy and X-ray diffractometry, and the hardness profiles were determined by a Vickers hardness tester. The corrosion behavior in 3.5% NaCl solution was studied by electrochemical corrosion equipment. The large carbides of high chrome steels are completely dissolved and ultrafine dendrites of austenite with submicroscopic M23C6 carbides precipitation are formed in the melted zone. The austenite in the melted zone has a high tempering stability. The corrosion resistance of the laser surface-melted steels is significantly improved due to the dissolution of carbides and the increase of the alloying elements in the solid solution as well as the large amount of austenite.  相似文献   

17.
18.
Bi,Sb合金化对AZ91镁合金组织、性能影响机理研究   总被引:12,自引:0,他引:12       下载免费PDF全文
张国英  张辉  方戈亮  李昱材 《物理学报》2005,54(11):5288-5292
利用大角重位点阵模型建立了AZ91镁合金α相[0001]对称倾斜晶界原子结构模型,应用实空间的连分数方法计算了Mg合金的总结构能,合金元素引起的环境敏感镶嵌能及原子间相互作用能,讨论了主要合金元素Al及Bi,Sb在AZ91中的合金化行为.计算结果表明,Al,Bi,Sb固溶于α相内或晶界区使总结构能都降低,起到固溶强化作用;合金元素在AZ91α相内趋于均匀分布,在晶界区易占位于三角椎上部.AZ91镁合金中加入Bi或Sb时,Bi或Sb比Al容易偏聚于晶界,从而抑制了Al在晶界的偏聚,促进基体中连续的Mg17Al12相的析出,提高AZ91合金室温性能; AZ91合金中(α相内和晶界区)主要合金元素Al和微加元素Bi,Sb都能够形成有序相Mg17Al12,Mg3Bi2或Mg3Sb2,且在晶界区形成的量大.Bi,Sb加入AZ91合金中,由于Bi,Sb抑制Al在晶界的偏聚,晶界区主要析出相为Mg3Bi2或Mg3Sb2,提高镁合金高温性能. 关键词: 电子理论 合金化 晶界偏聚 镁合组织与性能  相似文献   

19.
The morphology of a chromium-free conversion coating for AZ91D magnesium alloy was observed with an Atomic Force Microscopy. The results showed the uniform conversion coating has a relatively smooth appearance with shallow valleys. The EDX results indicated that the compositions of the coating were mainly compounds of Mg, Al, Mn, P, Ca and O. The XRD result showed that the coating contained amorphous materials and a small quantity of crystalline compound. The pitting product of the coating in NaCl water solution mainly composed of Mg, Cl, Mn, P, Ca and O. The corrosion behavior of the samples in NaCl solution was also studied by electrochemical impedance spectroscopy (EIS), which was characterized by one capacitive loop and one inductive loop. Based upon study on both a mathematical model for Faradic admittance of coating in NaCl solution and EIS, it could be considered that the inductive loop was caused by the adsorption of Cl anion and the appearance of pitting corrosion. A degradation mechanism of the coating in NaCl solution is set forth: dissolution velocity of the Cl adsorption regions of the coating is higher than those non-adsorption regions, for Cl anions are selective adsorption at some regions of coating surface. When the adsorption regions of coating layer are penetrated by dissolution, the pitting comes into being. The degradation mechanism of conversion coating and the mathematical model are consistent with the EIS results, polarization measurement results and coating's corrosion test results.  相似文献   

20.
The Ni-P/Ni-B duplex coatings were deposited on AZ91D magnesium alloy by electroless plating process and their structure, morphology, microhardness and corrosion resistance were evaluated. The duplex coatings were prepared using dual baths (acidic hypophosphite- and alkaline borohydride-reduced electroless nickel baths) with Ni-P as the inner layer. The coatings were amorphous in as-plated condition and crystallized and produced nickel borides upon heat-treatment. SEM observations showed that the duplex interface on the magnesium alloy was uniform and the compatibility between the layers was good. The Ni-P/Ni-B coatings microhardness and corrosion resistance of having Ni-B coating as the outer layer was higher than Ni-P coatings. The Ni-P/Ni-B duplex coatings on AZ91D magnesium alloy with high hardness and good corrosion resistance properties would expand their scope of applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号