首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We predict the existence of spatially localized nontrivial topological states of a Bose-Einstein condensate with repulsive atomic interactions confined by an optical lattice. These nonlinear localized states, matter-wave gap vortices, carry a vortexlike phase dislocation and exist in the gaps of the matter-wave band-gap spectrum due to the Bragg scattering. We discuss the structure, stability, and formation dynamics of the gap vortices in the case of two-dimensional optical lattices.  相似文献   

2.
Using numerical methods, we construct families of vortical, quadrupole, and fundamental solitons in a two-dimensional (2D) nonlinear-Schrödinger/Gross-Pitaevskii equation which models Bose-Einstein condensates (BECs) or photonic crystals. The equation includes the attractive or repulsive cubic nonlinearity and an anisotropic periodic potential. Two types of anisotropy are considered, accounted for by the difference in the strengths of the 1D sublattices, or by a difference in their periods. The limit case of the quasi-1D optical lattice (OL), when one sublattice is missing, is included too. By means of systematic simulations, we identify stability limits for two species of vortex solitons and quadrupoles, of the rhombus and square types. In the attraction model, rhombic vortices and quadrupoles remain stable up to the limit case of the quasi-1D lattice. In the same model, finite stability limits are found for vortices and quadrupoles of the square type, in terms of the anisotropy parameter. In the repulsion model, rhombic vortices and quadrupoles are stable in large parts of the first finite bandgap (FBG). Another species of partly stable anisotropic states is found in the second FBG, subfundamental dipoles, each squeezed into a single cell of the OL. Square-shaped quadrupoles are completely unstable in the repulsion model, while vortices of the same type are stable only in weakly anisotropic OL potentials.  相似文献   

3.
Matter-wave localization in disordered cold atom lattices   总被引:1,自引:0,他引:1  
We propose to observe Anderson localization of ultracold atoms in the presence of a random potential made of atoms of another species or spin state and trapped at the nodes of an optical lattice, with a filling factor less than unity. Such systems enable a nearly perfect experimental control of the disorder, while the possibility of modeling the scattering potentials by a set of pointlike ones allows an exact theoretical analysis. This is illustrated by a detailed analysis of the one-dimensional case.  相似文献   

4.
We systematically investigate slowly moving matter-wave gap soliton propagation in weak random optical lattices. With the weak randomness, an effective-particle theory is constructed to show that the motion of a gap soliton is similar to a particle moving in random potentials. Based on the effective-particle theory, the effects of the randomness on gap solitons are obtained and the trajectories of gap solitons are well predicted. Moreover, the general laws that describe the movement depending on the weak randomness are obtained. We find that with an increase of the random strength, the ensemble-average velocity reduces slowly and the reflection probability becomes larger. The theoretical results based on the effective-particle theory are confirmed by the numerical simulations based on the Gross-Pitaevskii equation.  相似文献   

5.
周琦  陆俊发  印建平 《中国物理 B》2010,19(9):93202-093202
This paper proposes a scheme of axial triple-well optical dipole trap by employing a simple optical system composed of a circular cosine grating and a lens. Three optical wells separated averagely by ~37 μm were created when illuminating by a YAG laser with power 1 mW. These wells with average trapping depth ~0.5 μK and volume ~74 μm3 are suitable to trap and manipulate an atomic Bose--Einstein condensation (BEC). Due to a controllable grating implemented by a spatial light modulator, an evolution between a triple-well trap and a single-well one is achievable by adjusting the height of potential barrier between adjacent wells. Based on this novel triple-well potentials, the loading and splitting of BEC, as well as the interference between three freely expanding BECs, are also numerically stimulated within the framework of mean-field treatment. By fitting three cosine functions with three Gaussian envelopes to interference fringe, the information of relative phases among three condensates is extracted.  相似文献   

6.
We report on our recent theoretical and experimental studies of three-dimensional (3D) photonic lattice structures which are established in a bulk nonlinear crystal by employing different optical induction techniques. These 3D photonic lattices bring about new opportunities for controlling the flow of light via coupling engineering originated from the lattice modulation along the beam propagation direction. By fine tuning the lattice parameters, we observe a host of unusual behaviors of beam propagation in such reconfigurable 3D lattices, including enhanced discrete diffraction, light tunneling inhibition—better known as coherent destruction of tunneling (CDT), anomalous diffraction, negative refraction, as well as CDT-based image transmission. In addition, we propose and demonstrate a new way of creating 3D ionic-type photonic lattices by controlled Talbot effect.  相似文献   

7.
We report the first direct observation of Brillouin-like propagation modes in a dissipative periodic optical lattice. This has been done by observing a resonant behavior of the spatial diffusion coefficient in the direction corresponding to the propagation mode with the phase velocity of the moving intensity modulation used to excite these propagation modes. Furthermore, we show theoretically that the amplitude of the Brillouin mode is a nonmonotonic function of the strength of the noise corresponding to the optical pumping, and discuss this behavior in terms of nonconventional stochastic resonance.  相似文献   

8.
9.
Plane wave propagation in infinite two-dimensional periodic lattices is investigated using Floquet-Bloch principles. Frequency bandgaps and spatial filtering phenomena are examined in four representative planar lattice topologies: hexagonal honeycomb, Kagomé lattice, triangular honeycomb, and the square honeycomb. These topologies exhibit dramatic differences in their long-wavelength deformation properties. Long-wavelength asymptotes to the dispersion curves based on homogenization theory are in good agreement with the numerical results for each of the four lattices. The slenderness ratio of the constituent beams of the lattice (or relative density) has a significant influence on the band structure. The techniques developed in this work can be used to design lattices with a desired band structure. The observed spatial filtering effects due to anisotropy at high frequencies (short wavelengths) of wave propagation are consistent with the lattice symmetries.  相似文献   

10.
Using mean field theory, we have studied Bose-Fermi mixtures in a one-dimensional optical lattice in the case of an attractive boson-fermion interaction. We consider that the fermions are in the degenerate regime and that the laser intensities are such that quantum coherence across the condensate is ensured. We discuss the effect of the optical lattice on the critical rotational frequency for vortex line creation in the Bose-Einstein condensate, as well as how it affects the stability of the boson-fermion mixture. A reduction of the critical frequency for nucleating a vortex is observed as the strength of the applied laser is increased. The onset of instability of the mixture occurs for a sizably lower number of fermions in the presence of a deep optical lattice.  相似文献   

11.
12.
Freund I 《Optics letters》2004,29(8):875-877
Polarization singularities are shown to be unavoidable features of three-dimensional optical lattices. These singularities take the form of lines of circular polarization, C lines, and lines of linear polarization, L lines. The polarization figures surrounding a C line (L line) rotate about the line with winding number +/-1/2 (+/-1). C and L lines permeate the lattice, meander throughout the unit cell, and form closed loops. Surprisingly, every point in a linearly polarized optical lattice is found to be a singularity about which the surrounding polarization vectors rotate with an integer winding number.  相似文献   

13.
We present exact results for the spectra of three fermionic atoms in a single well of an optical lattice. For the three lowest hyperfine states of 6Li atoms, we find a Borromean state across the region of the distinct pairwise Feshbach resonances. For 40K atoms, nearby Feshbach resonances are known for two of the pairs, and a bound three-body state develops towards the positive scattering-length side. In addition, we study the sensitivity of our results to atomic details. The predicted few-body phenomena can be realized in optical lattices in the limit of low tunneling.  相似文献   

14.
Graphene has attracted enormous attention over the past years in condensed matter physics. The most interesting feature of graphene is that its low-energy excitations are relativistic Dirac fermions. Such feature is the origin of many topological properties in graphene-like physics. On the other hand, ultracold quantum gas trapped in an optical lattice has become a unique setting for quantum simulation of condensed matter physics. Here, we mainly review our recent work on quantum simulation of graphene-like physics with ultracold atoms trapped in a honeycomb or square optical lattice, including the simulation of Dirac fermions and quantum Hall effect with and without Landau levels. We also present the related experimental advances.  相似文献   

15.
We study the extended Bose-Hubbard model describing an ultracold gas of dipolar molecules in an optical lattice, taking into account all on-site and nearest-neighbor interactions, including occupation-dependent tunneling and pair tunneling terms. Using exact diagonalization and the multiscale entanglement renormalization ansatz, we show that these terms can destroy insulating phases and lead to novel quantum phases. These considerable changes of the phase diagram have to be taken into account in upcoming experiments with dipolar molecules.  相似文献   

16.
We show that vortices, induced in cold atom superfluids in optical lattices, may order in a novel vortex-Peierls ground state. In such a state vortices do not form a simple lattice but arrange themselves in clusters, within which the vortices are partially delocalized, tunneling between classically degenerate configurations. We demonstrate that this exotic quantum many-body state is selected by an order-from-disorder mechanism for a special combination of the vortex filling and lattice geometry that has a macroscopic number of classically degenerate ground states.  相似文献   

17.
We present an overview of our recent results in the area of soliton excitation and control in optical lattices induced by different types of nondiffracting beams featuring unique symmetries. Optical lattices offer the possibility to engineer and to control the diffraction of light beams in media with transversally modulated optical properties, to manage the corresponding reflection and transmission bands, and to form specially designed defects. Consequently, they afford the existence of a rich variety of new families of nonlinear stationary waves and solitons, lead to new rich dynamical phenomena, and offer novel conceptual opportunities for all-optical shaping, switching and routing of optical signals encoded in soliton formats. In this overview, we consider different types of solitons, including fundamental, multipole, and vortex solitons in reconfigurable lattices optically induced by nondiffracting radially symmetric and azimuthally modulated single Bessel beams, soliton control in networks, couplers, and switches induced by several mutually coherent or incoherent Bessel beams, we address soliton properties in three-dimensional Bessel lattices, as well as in lattices produced by Mathieu and parabolic optical beams.  相似文献   

18.
A fiber-like lattice with resistively coupled electronic elements mimicking a 1-D discrete reaction-diffusion system is considered. The chosen unit or element in the fiber is the paradigmatic Chua's circuit, capable of exhibiting bistable, excitable, oscillatory or chaotic behavior. Then the dynamics of a structure of two such interacting parallel active fibers is studied. Suitable conditions for the interaction to yield synchronization and other forms of collective behavior involving both fibers are obtained. They include wave front propagation, pulse reentry and pulse propagation failure, overcoming of propagation failure, and the appearance of a source of synchronized pulses. The possibility of designing controlled dynamic contacts by means of one or a few inter-fiber couplings is also discussed. Received 12 December 1998  相似文献   

19.
This paper presents an overview of our recent theoretical and experimental work investigating the application of deep, periodic optical dipole potentials (optical lattices) produced by intense pulsed optical fields for the transport of neutral molecular gases. Our review outlines the deceleration of molecules in a molecular beam to create slow cold molecules and also acceleration for production of hyperthermal molecular beams with velocities in excess of 10 km/s for material processing. We describe how bulk motion can be induced in a gas by a traveling optical lattice, even when the gas is not fully trapped by the lattice. In all these cases energy and momentum can be deposited from laser radiation that is not resonant with any internal states. When significant numbers of gas collisions occur during the lattice/laser pulse, gas heating accompanied by the formation of gas jets in free space and bulk drift in a capillary can be induced. Finally, we describe a new nonintrusive laser diagnostic method for measurement of gas properties based on analysis of light scattered from density perturbations induced by lattices. PACS 32.80.Lg; 42.50.Vk; 51.10.+y; 42.65.Es; 33.20.Fb  相似文献   

20.
Soliton eigenvalue control in optical lattices   总被引:1,自引:0,他引:1  
We address the dynamics of higher-order solitons in optical lattices, and predict their self-splitting into the set of their single-soliton constituents. The splitting is induced by the potential introduced by the lattice, together with the imprinting of a phase tilt onto the initial multisoliton states. The phenomenon allows the controllable generation of several coherent solitons linked via their Zakharov-Shabat eigenvalues. Application of the scheme to the generation of correlated matter waves in Bose-Einstein condensates is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号