首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
TiO2 nanoparticles have been synthesized on the surface of exfoliated montmorillonite at a low temperature in benzyl alcohol medium. According to X-ray diffraction (XRD), N2 adsorption-desorption isotherm and transmisson electron microscopy (TEM), it was found that the intercalation of TiO2 nanoparticles destroyed the ordered structure of montmorillonite to some extent, and the crystallites of the nanocomposites are assembled to form a house-of-cards structure. The size of the nanoparticles in the interlamellar space is about 4 nm. The nanocomposites exhibited excellent photocatalytic activity in methylene blue degradation due to the synergetic effect of the adsorptive ability to organic compound of cetyl trimethylammonium bromide—montmorillonite and the catalytic ability of TiO2 nanoparticles in it.  相似文献   

2.
Crystalline anatase phase TiO2 with photocatalytic properties was obtained through a sol–gel low-temperature hydrothermal process. TiO2 samples doped with tungsten oxide were also obtained by using this synthetic approach. The photocatalytic oxidation of methylene blue in water was monitored to study the influence of the tungsten doping degree on the photocatalytic degradation performance of TiO2. The degradation rate constant was further increased by adjusting the tungsten doping degree of hydrothermal TiO2. Also, a much faster photodegradation of methylene blue was achieved using tungsten doped samples baked at 450°C. The results were compared with those obtained with Degussa P25 used as photocatalyst. The structure and optical properties of tungsten-doped TiO2 were studied by SEM, X-ray diffraction, UV–vis and DRIFT spectroscopy techniques.  相似文献   

3.
Fluorine-modified TiO2 nan oparticles were synthesized by introducing TiF4 as a fluorine source either before or after the sufficient hydrolysis and condensation of Ti(OEt)4. The photocatalytic activity of the fluorine-modified catalysts was found to be greatly affected by the fluorine position in TiO2 nanoparticles. When TiF4 and Ti(OEt)4 hydrolyzed with synchronization, the fluorine tended to be doped in the lattice. The formation of Ti3+ defects could result in charge recombination in bulk and bring down the photocatalytic activity. In contrast, if TiF4 was introduced after the sufficient hydrolysis and condensation of Ti(OEt)4. Ti−F bonds could exist mainly on the TiO2 particles surface, which not only prevented the growth of anatase crystals but also facilitated the transfer of organic compounds from solution to catalyst surface by reducing the hydrophilic properties.  相似文献   

4.
Nanostructures TiO2–SiO2 photocatalysts were successfully synthesized using the sol-gel method, hydro-calcination, co-precipitation and room-temperature solid-phase synthesis technology. X-ray powder diffraction pattern (XRD), Fourier transform infrared spectrum (FTIR), photoluminescence (PL) spectra, thermal analyses (TG–DTA), scanning electron micrographs (SEM), X-ray photoelectron spectroscopy (XPS), and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) were used to characterize the as-synthesized catalysts. Photocatalytic performances of the catalysts were evaluated by the degradation of methyl orange (MO) under s imulated natural light and the degradation rate of MO is 97.2%. The composites showed a good stability: after five recycling runs there are no significant decreases in the photocatalytic activity. The photodegradation of methylene blue, rhodamine B, methyl violet, naphthol green B, basic fuchsin, malachite green, and methyl red were also tested, and the degradation rate of dyes could reach over 94.2 %. A possible mechanism for the photocatalysis with the TiO2–SiO2 was proposed.  相似文献   

5.
Microcomposites consisting of TiO2 (or Ce-doped TiO2) and ThO2 (0.5–2% of the TiO2 mass) are produced by sol-gel synthesis of TiO2 in presence of ThO2. X-ray diffraction study reveals the effects of ThO2 (compared to the ThO2-free TiO2, obtained by the same method) on the anatase interplanar distances, crystallites size and phase composition. The photocatalytic tests in presence of the composites under UV irradiation reveal an increase of the Malachite Green degradation rate constant. The effect depends on the Th relative content, temperature of annealing of the catalyst and addition of other doping agent. The highest photocatalytic activity is observed for TiO2 obtained at 550°C and containing 1% ThO2. The composite exhibits activity in dark, also. The presence of Ce4+ ions is not an obligatory requirement for the realization of the ThO2 effect. The reported results suggest that the radioactivity of the Th and/or its decay products is one of the main factors responsible for the increased photocatalytic activity of TiO2.   相似文献   

6.
Mesoporous TiO2/γ-Al2O3 composite granules were prepared by combining sol–gel/oil-drop method, using various titania solution. The product granules can be used as a photocatalyst or adsorbent in moving, fluidized bed reactors. The phase composition and pore structure of the granules can be controlled by calcination temperature and using different titania solution. In the photocatalysis of NH3 decomposition, TiO2/γ-Al2O3 granules using Degussa P25 powder treated thermally at 450 °C showed the highest catalytic ability. However, TiO2/γ-Al2O3 granules using titania made by hydrothermal method had comparable performance in NH3 decomposition.  相似文献   

7.
Titania thin films were synthesized by sol–gel dip-coating method with metallic Ni nanoparticles synthesized separately from an organometallic precursor Ni(COD)2 (COD = cycloocta-1,5-diene) in presence of 1,3-diaminopropane as a stabilizer. Titania was obtained from a titanium isopropoxide precursor solution in presence of acetic acid. A Ni/TiO2 sol system was used to coat glass substrate spheres (6, 4 and 3 mm diameter sizes), and further heat treatment at 400 °C was carried out to promote the crystallization of titania. XRD analysis of the TiO2 films revealed the crystallization of the anatase phase. Transmission Electron Microscopy (TEM) and High Resolution TEM studies of Ni nanoparticles before mixing with the TiO2 solution revealed the formation of Ni nanostructures with an average size of 5–10 nm. High-angle annular dark-field images of the Ni/TiO2 system revealed well-dispersed Ni nanoparticles supported on TiO2 and confirmed by AFM analysis. The photocatalytic activity of the Ni/TiO2 films was evaluated in hydrogen evolution from the decomposition of ethanol using a mercury lamp for UV light irradiation. Titania films in presence of Ni nanoparticles show higher efficiency in their photocatalytic properties in comparison with TiO2.  相似文献   

8.
N, B, Si-tridoped mesoporous TiO2, together with N-doped, N, B-codoped and N, Si-codoped TiO2, was prepared by a modified sol–gel method. The samples were characterized by wide-angle X-ray diffraction (WAXRD), N2 adsorption–desorption, transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, UV–visible adsorbance spectra (UV–vis) and X-ray photoelectron spectra (XPS). The N, B, Si-tridoped mesoporous TiO2 showed small crystallite size, large specific surface area (350 m2/g), uniform pore distribution (3.2 nm) and strong absorption in the visible light region. The photocatalytic activities of the samples were evaluated by the photodegradation of 2,4-dichlorophenol (2,4-DCP) aqueous solution. The N, B, Si-tridoping sample exhibited much higher photocatalytic activity compared with other synthesized photocatalysts. The high activity could be attributed to the strong absorption in the visible light region, large specific surface area, small crystallite size, large amount of surface hydroxyl groups, and mesoporosity.  相似文献   

9.
10.
Bare TiO2 and Cu-doped TiO2 nanoparticles with different nominal doping amounts of Cu ranging from of 0.5 to 5.0 mol% were synthesized using the modified sol–gel method. The samples were physically characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, Brunauer–Emmett–Teller-specific surface area, UV–Vis diffuse reflectance spectroscopy, zeta potential, X-ray photoelectron spectroscopy, inductively coupled plasma, and photoluminescence techniques. The Cu-doped TiO2 exhibited good photocatalytic activity in mineralization of oxalic acid and formic acid under visible light irradiation. Photomineralization of oxalic and formic acids under visible light irradiation revealed greatly enhanced photoactivity exhibited by the 2.0 mol% Cu-doped TiO2 photocatalyst compared to bare TiO2 . The enhanced photocatalytic performance arises from copper ion doping in the TiO2 structure, leading to an extended photoresponsive range, enhanced photogenerated charge separation, and transportation efficiency.  相似文献   

11.
Silica/titania binary xerogels were prepared by joint hydrolysis of the ingredients. Gels of various compositions were characterized by 1H NMR spectroscopy, IR spectroscopy, and thermogravimetry. The spectral characteristics of binary systems differ considerably from mere superposition of the spectra of the two constituent compounds and the spectrum of a mechanical mixture. A feasibility was demonstrated for controlling the acid properties of binary oxide gels via varying the component mole ratio.  相似文献   

12.
Hierarchically nanostructured, porous TiO2(B) microspheres were synthesized by a microwave-assisted solvothermal method combined with subsequent heat treatment in air. The materials were carefully characterized by scanning and transmission electron microscopy, X-ray diffraction, CO2 adsorption, and a range of spectroscopies, including Raman, infrared, X-ray photoelectron and UV-Vis spectroscopy. The hierarchical TiO2(B) particles are constructed by ultrathin nanosheets and possess large specific surface area, which provided many active sites for CO2 adsorption as well as CO2 conversion. The TiO2(B) nanostructures exhibited marked photocatalytic activity for CO2 reduction to methane and methanol. Anatase TiO2 and P25 were used as the reference photocatalysts. Transient photocurrent measurement also proved the higher photoactivity of TiO2(B) than that of anatase TiO2. In-situ infrared spectrum was measured to identify the intermediates and deduce the conversion process of CO2 under illumination over TiO2(B) photocatalyst.  相似文献   

13.
The photocatalytic activity of S-doped TiO2 powder depends on the S content. To synthesize S-doped TiO2 powders with high S content, solvothermal processes were used in this work. The S-doped TiO2 powder contains 2.0 M% sulfur and has an absorption edge of 460 nm (2.7 eV). The pure TiS2 powder also synthesized by a solvothermal process has an absorption edge of 595 nm (2.08 eV) and broad absorption above 595 nm. The photocatalysis experiments indicate that the degradation of methyl orange is associated with the light adsorption edge. The photocatalytic activity is much larger for the pure TiS2 powder than for partially S-doped TiO2 powder.  相似文献   

14.
TiO2 nanofibers were prepared from tetrabutyl titanate sol precursors by using electrospun method. X-ray diffraction (XRD) and atomic force microscope (AFM) were used to characterize their crystal structure and morphology feature. The results demonstrated that TiO2 nanofibers possessed anatase phase and the average diameter of TiO2 nanofibers was about 150 nm. The photocatalytic property of TiO2 nanofibers was evaluated for the photodecomposition of methyl orange solution. And TiO2 nanofibers exhibited high photocatalytic activities with transfer efficiency about 100% after 20 min.  相似文献   

15.
Nanosized TiO2 and nano-anatase TiO2 decorated on SiO2 spherical core shells were synthesized by using a sol–gel method. The synthesized pure TiO2 nano particle and TiO2 grafted on SiO2 sphere with various ratios have been characterized for their structure and morphologies by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectrophotometry (FTIR) and transmission electron microscopy (TEM). Their surface areas were measured using the BET method. The photocatalytic activity of all nanocomposites was investigated using methylene blue as a model pollutant. The synthesized TiO2/SiO2 particles appeared to be more efficient in the degradation of methylene blue pollutant, as compared to pure TiO2 particles.  相似文献   

16.
Combining the versatility of electrospinning technique and hydrothermal growth of nanostructures enabled the fabrication of hierarchical CeO2/TiO2 nanofibrous mat. The as-prepared hierarchical heterostructure consisted of CeO2 nanowalls growing on the primary TiO2 nanofibers. Interestingly, not only were secondary CeO2 nanowalls successfully grown on TiO2 nanofibers substrates, but also the CeO2 nanowalls were uniformly distributed without aggregation on TiO2 nanofibers. The photocatalytic studies suggested that the CeO2/TiO2 heterostructures showed enhanced photocatalytic efficiency compared with bare TiO2 nanofibers under UV light irradiation.  相似文献   

17.
The application of electrochemically enhanced photocatalysis in air treatment using a Nafion-based photoelectrochemical cell and TiO2/WO3 photoanodes for organic vapor photooxidation under both UV and visible light irradiation is briefly presented. In that direction, the obtained results regarding the preparation and characterization of the TiO2/WO3 photoanodes with enhanced photocatalytic activity are reviewed. Particular emphasis is given in the comparison of the photocatalytic behavior of bilayer TiO2/WO3 coatings, electrosynthesized on stainless steel mesh and powder C + mixed (WO3 + TiO2) photoanodes. The advantages of using a high surface area C + mixed (WO3 + TiO2) powder catalysts as photoanodes against their plain TiO2 + C and WO3 + C analogues are discussed.  相似文献   

18.
Although TiO2 anatase phase has been widely chosen as the main photocatalyst, it presents high electron/hole recombination rate. However, today, what is sought is a semiconductor material with enhanced photocatalytic activity with higher photon to electron conversion efficiency by introduction of electrons trap dopants. In this paper, TiO2 nanotubes arrays obtained by anodization of Ti substrates were decorated with Ru via electrodeposition, and their photo-response was investigated. First, voltammetric experiments were performed to elucidate the route of Ru reduction on the TiO2 surface and to select the range of potentials for Ru deposition. The reduction potentials were used for controlling the amount of Ru distributed all over the surface. Although Ru was electrodeposited at potentials over the range from ??0.025 to ??0.188 V vs. Ag/AgCl, the deposition of 3.7 mC cm?2 at ??0.100 V for 30 min resulted in a tenfold greater photocurrent when compared to the recorded photocurrent for the undecorated TiO2 nanotubes array. Next, Ru-decorated TiO2 nanotubes with a length of 323?±?18 nm and inner and outer diameters of 91 and 104 nm, respectively, were characterized using SEM-WDS, SEM-FEG, XRD, and XPS. UV-Vis-NIR diffuse reflectance spectroscopy and photoluminescence (PL) measurements, which revealed a maximum PL emission at 445 nm, showed that for the array of Ru-decorated TiO2 nanotubes, the electron-hole recombination may be effectively inhibited by the presence of ruthenium electrodeposited, which can make this photocatalyst even more attractive for environmental applications. The performances of the TiO2 and Ru-decorated TiO2 catalysts were compared in heterogeneous photocatalysis experiments for color removal of an azo-dye, which presented a pseudo-first-order rate constant more than twofold greater for the Ru-decorated TiO2 catalysts.  相似文献   

19.
A novel composite of Co(OH)2 and TiO2 nanotubes was synthesized by a chemical precipitation method. Co(OH)2/TiO2 nanotube composites and its microstructure were characterized by transmission electron microscopy (TEM), X-ray diffraction pattern (XRD). The electrochemical capacitance performance of this composite was investigated by cyclic voltammetry and charge–discharge tests with a three-electrode system in 6 M KOH solution. We synthesized different weight ratios of Co(OH)2/TiO2 nanotubes, a maximum specific capacitance of 229 F/g was obtained for the composite. Based on these tests, we propose that TiO2 nanotubes provide the three-dimensional nanotube network structure for the composite and make the Co(OH)2 dispersed. For these reasons, the TiO2 nanotubes used as a framework for Co(OH)2 improve the utilization of Co(OH)2 greatly.  相似文献   

20.
Bi2O3/BiFeO3 composite was successfully fabricated by a conventional sol–gel method and structural properties were characterized based on X-ray diffractometer, scanning electron microscope, transmission electron microscope, energy-dispersive X-ray analyzer, nitrogen adsorption–desorption measurement, and UV–visible diffuse reflectance spectroscopy. Bi2O3/BiFeO3 had a good absorption for visible light, which was benefit to photocatalytic activity. The highest degradation efficiency was obtained when the content of Bi2O3 in Bi2O3/BiFeO3 was 63.9%. Effect of experimental conditions was investigated, and the highest photocatalytic activity of Bi2O3/BiFeO3 was observed at photocatalyst dosage of 0.5 g/L, initial BPA concentration of 10 mg/L, and solution pH of 6.3. Bi2O3/BiFeO3 photocatalyst exhibited enhanced photocatalytic activity for BPA, and the reaction rate constant over Bi2O3/BiFeO3 composite was 2.23, 3.65, and 8.71 times higher than that of BiFeO3, Bi2O3 and commercial TiO2 (P25), respectively. Bi2O3/BiFeO3 showed high photocatalytic activity after three cycles, suggesting that it was a stable photocatalyst. The possible photocatalytic mechanism has been discussed on the basis of the theoretical calculation and the experimental results. The hydroxyl and superoxide radicals together with photogenerated holes played significant roles in the photocatalytic reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号