首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, the Volterra series theory is adopted to theoretically investigate the force transmissibility of multiple degrees of freedom (MDOF) structures, in which an isolator with nonlinear anti-symmetric viscous damping is assembled. The results reveal that the anti-symmetric nonlinear viscous damping can significantly reduce the force transmissibility over all resonance regions for MDOF structures with little effect on the transmissibility over non-resonant and isolation regions. The results indicate that the vibration isolators with an anti-symmetric damping characteristic have great potential to solve the dilemma occurring in the design of linear viscously damped vibration isolators where an increase of the damping level reduces the force transmissibility over resonant frequencies but increases the transmissibility over non-resonant frequency regions. This work is an extension of a previous study in which MDOF structures installed on the mount through an isolator with cubic nonlinear damping are considered. The theoretical analysis results are also verified by simulation studies.  相似文献   

2.
In the present study, the concept of the Output Frequency Response Function (OFRF), recently proposed by the authors, is applied to theoretically investigate the force transmissibility of MDOF structures with a cubic non-linear viscous damping device. The results analytically show that the introduction of cubic non-linear damping can significantly reduce the transmissibility over all resonance regions for a Multiple Degree of Freedom (MDOF) structure and at the same time leave the transmissibility over the isolation region virtually unaffected. The analysis also indicates that a strong linear damping may shift the system resonances and compromise the beneficial effects of cubic non-linear viscous damping on the force transmissibility of MDOF structures. This suggests that a less significant linear damping together with a strong cubic non-linear damping can be used in MDOF structures to achieve a desired vibration isolation performance. This research work has a significant implication for the design of viscously damped MDOF structures for a wide range of practical applications.  相似文献   

3.
A nonlinear vibration isolation system is promising to provide a high-efficient broadband isolation performance. In this paper, a generalized vibration isolation system is established with nonlinear stiffness, nonlinear viscous damping, and Bouc-Wen(BW)hysteretic damping. An approximate analytical analysis is performed based on a harmonic balance method(HBM) and an alternating frequency/time(AFT) domain technique.To evaluate the damping effect, a generalized equivalent damping ratio is defined w...  相似文献   

4.
This work presents a multiple time scales perturbation analysis for analyzing weakly nonlinear wave interactions in multi-degree of freedom periodic structures. The perturbation analysis is broadly applicable to (discretized) periodic systems in any dimensional space and with a wide range of constitutive nonlinearities. Specific emphasis is placed on cubic nonlinearity, as dispersion shifts typically arise from the cubic components in nonlinear restoring forces. The procedure is first presented in general. Then, application to the diatomic chain and monoatomic two-dimensional lattice demonstrates, individually, the treatment of multiple degree of freedom systems and higher dimensional spaces. The dispersion relations are modified by weakly nonlinear wave interactions and lead to additional opportunities to control wave propagation direction, band gap size, and group velocity. Numerical simulations validate the expected dispersion shifts. An amplitude-tunable focus device demonstrates the viability of utilizing dynamically-introduced dispersion to produce beam steering that may, ultimately, lead to a phononic superprism effect as well as multiplexing/demultiplexing behavior.  相似文献   

5.
首先将转子系统的动力响应问题归结为2n维未知向量v的一阶非线性动力学方程dv/dt=Hv+f(v,t),并给出了求解这一方程的一次近似式法和三次多项式迫近法。在非稳态、非线性油膜力等作用下,以刚性Jeffcott转子与112个自由度的汽轮发电机组低压转子系统为例,用上述求解方法分析了它们的动力响应及非线性动力学特性;其问,还将计算结果与Runge—Kutta法、Newmark法的相应结果进行了比较,并深入讨论了数值稳定性问题。汽轮发电机组的算例表明对一些具有较复杂的非线性右端项,、同时规模又较大的问题,如果采用四阶Runge—Kutta法,才算几步就因数值骤然增大而失控;但若用同样步长的一次近似式,由于它是一种显式的无条件稳定算式,则计算过程迅速且结果合理可靠。  相似文献   

6.
By a special layout of the damper in a vibration isolation system, the velocity-nth power damping of the damper can be transformed into the velocity-displacement dependent damping in the moving direction due to geometric nonlinearity. This study is mainly concerned with the mechanism of this geometric nonlinear damping and tries to find some guidelines for designing isolators with high performance, regardless of the isolator is passive or active. The model used in this study is an unconstrained two-degree-of-freedom isolation system, which is suitable for investigating vibration isolation in space vehicles. The motion equation is solved by the averaging method to obtain the amplitude–frequency equation. The influence of damping coefficients on the force transmissibility is analyzed. Results show that this kind of damping has some advantages in improving isolation performance at both the resonance and higher frequencies. Meanwhile, it can also degrade the isolation performance if unreasonable parameters are chosen.  相似文献   

7.
An electromechanical integrated electrostatic harmonic actuator is promising for the miniaturization of electromechanical devices. As the dimensions of the actuator decrease, the effects of the van der Waals force become obvious. In this study, by considering the nonlinearity of electrostatic and van der Waals forces, nonlinear vibration equations of the flexible ring of an electrostatic harmonic actuator are deduced. Using these equations, the nonlinear free vibration and nonlinear forced response of the actuator are investigated. The effects of the van der Waals force on the nonlinear vibration of the flexible ring are analyzed. Results show that these effects of the van der Waals force are relatively obvious under some conditions and should be considered.  相似文献   

8.
几何非线性摩擦阻尼隔振系统动力学行为研究   总被引:1,自引:5,他引:1  
非线性隔振系统由于具有较线性系统更优的隔振性能,因此在工程中应用广泛.本文通过配置与被隔振对象的运动方向相垂直的库伦摩擦阻尼器,构建了几何非线性摩擦阻尼模型.由于引入了几何非线性,因此其摩擦力与位移正相关,这与传统与位移无关摩擦力模型有显著不同.首先,建立了具有几何非线性摩擦阻尼的数学模型以及隔振系统的受迫振动方程;然后,使用谐波平衡法求解了动力学方程,并使用数值仿真方法验证了谐波平衡法求解的准确性;最后,研究了几何非线性摩擦阻尼隔振器的绝对位移传递率和相对位移传递率.研究结果表明,在库伦摩擦阻尼选择适当,非线性摩擦阻尼系统可以在保持高频振动衰减效果的前提下,显著降低系统共振峰,其性能优于传统的恒定摩擦阻尼隔振模型.同时,几何非线性摩擦阻尼系统能够避免传统摩擦阻尼系统中的“锁定”现象,从传递率角度来说,不利于共振峰控制;但从激励环境改变引发隔振系统失效的角度来看,几何非线性摩擦阻尼系统可以拓宽系统对激励幅值的适应范围,避免隔振系统失效.本文的研究结果对此类隔振系统的设计和摩擦阻尼参数的选择具有通用的指导意义.   相似文献   

9.
Quasi-zero-stiffness(QZS) vibration isolators have been widely studied,because they show excellent high static and low dynamic stiffnesses and can effectively solve low-frequency and ultralow-frequency vibration. However, traditional QZS(T-QZS)vibration isolators usually adopt linear damping, owing to which achieving good isolation performance at both low and high frequencies is difficult. T-QZS isolators exhibit hardening stiffness characteristics, and their vibration isolation performance is e...  相似文献   

10.
温华兵  昝浩  陈宁  杨兴林 《实验力学》2015,30(4):483-490
本文设计了一种滚珠丝杠惯容器及ISD隔振系统,通过实验研究了惯性轮的转动惯量对惯容值的影响;同时,分析了滚珠丝杠惯容器的机械动力学特性,推导了ISD隔振系统的振动传递率计算公式,探讨了惯容器对ISD隔振系统动态特性的影响。在电机被动、主动和混合隔振工况下,开展了弹簧阻尼系统和ISD隔振系统的振动性能对比实验,验证了惯容器对振动系统固有频率和减振效果的影响规律。研究结果表明,惯容器可降低振动系统的固有频率,使共振频率向低频移动,共振振幅降低;在共振频率附近,惯容器可抑制共振振幅,惯容值越高,抑制效果越明显;ISD隔振系统在低频的减振效果优于传统的弹簧阻尼系统;随着频率比的增加,ISD隔振系统的传递率趋于稳定值,惯容器会引起高频隔振性能降低。  相似文献   

11.
利用积分型本构关系,建立了带支撑的一般粘滞和粘弹性阻尼器单自由度耗能结构的微分-积分混合地震响应方程;基于与随机平均分析完全相同的等效准则,推导了可直接应用反应谱的阻尼器的等效刚度和等效阻尼的解析公式;得到了带支撑广义Maxwell阻尼器和广义微分模型阻尼器的等效刚度和等效阻尼的一般结果。通过与一些典型问题的数值计算结果比较,表明了所提方法的有效性。  相似文献   

12.
直升机桨叶液压减摆器等效阻尼计算研究   总被引:1,自引:0,他引:1  
直升机桨叶液压减摆器具有强非线性、大阻尼的特点。为了正确评估减摆器的等效阻尼,就旋转桨叶在水平面内的自由摆振运动,采用基于富里叶分析的移动矩形窗、基于希尔贝特(Hilbert)变换和能量平衡的方法对减摆器的等效阻尼进行了计算研究,并就阻尼强弱、衰减对数曲线的拟合等因素对计算结果的影响进行了分析。结果表明,对于线性阻尼和非线性弱阻尼振动系统,包络衰减法和能量平衡法计算等效阻尼能获得较一致的结果,对于非线性阻尼振动系统来说结果有分散性,应用时须谨慎。  相似文献   

13.
This study is concerned with the analysis and design of the force and displacement transmissibility of nonlinear viscous damper based vibration isolation systems. Analytical algorithms are derived using the Ritz–Galerkin method to evaluate the transmissibility of SDOF displacement vibration isolation and force vibration isolation systems where a nonlinear viscous damper is used as an energy dissipating device. The results reveal that compared to linear dampers, nonlinear viscous dampers can more significantly improve the system vibration isolation performance in a wider frequency range. A procedure is then proposed based on the analysis results to facilitate the design of nonlinear viscous dampers for system vibration isolation purposes. These results have significant implications for the design of vibration isolation systems in many engineering applications.  相似文献   

14.

Vibration isolation is one of the most efficient approaches to protecting host structures from harmful vibrations, especially in aerospace, mechanical, and architectural engineering, etc. Traditional linear vibration isolation is hard to meet the requirements of the loading capacity and isolation band simultaneously, which limits further engineering application, especially in the low-frequency range. In recent twenty years, the nonlinear vibration isolation technology has been widely investigated to broaden the vibration isolation band by exploiting beneficial nonlinearities. One of the most widely studied objects is the “three-spring” configured quasi-zero-stiffness (QZS) vibration isolator, which can realize the negative stiffness and high-static-low-dynamic stiffness (HSLDS) characteristics. The nonlinear vibration isolation with QZS can overcome the drawbacks of the linear one to achieve a better broadband vibration isolation performance. Due to the characteristics of fast response, strong stroke, nonlinearities, easy control, and low-cost, the nonlinear vibration with electromagnetic mechanisms has attracted attention. In this review, we focus on the basic theory, design methodology, nonlinear damping mechanism, and active control of electromagnetic QZS vibration isolators. Furthermore, we provide perspectives for further studies with electromagnetic devices to realize high-efficiency vibration isolation.

  相似文献   

15.
16.
17.
Concerns with the nonexistence of global solutions to the initial boundary value problem for a nonlinear hyperbolic equation with material damping. Nonexitence theorems of global solutions to the above problem are proved by the energy method, Jensen inequality and the concavity method, respectively. As applications of our main results, three examples are given.  相似文献   

18.
Through a mathematical and computational model of the physical behavior of shape memory alloy wires, this study shows that localized heating and cooling of such materials provide an effective means of damping vibrational energy. The thermally induced pseudo-elastic behavior of a shape memory wire is modeled using a continuum thermodynamic model and solved computationally as described by the authors in [23]. Computational experiments confirm that up to of an initial shock of vibrational energy can be eliminated at the onset of a thermally-induced phase transformation through the use of spatially-distributed transformation regions along the length of a shape memory alloy wire.Received: 30 May 2003, Accepted: 20 December 2003, Published online: 16 April 2004PACS: 02.60.Cb, 68.45.Kg, 64.70.Kb Correspondence to: Petr Klouek.The first two authors were supported in part by the grant NSF DMS-0107539, by the Los Alamos National Laboratory Computer Science Institute (LACSI) through LANL contract number 03891-99-23, as part of the prime contract W-7405-ENG-36 between the Department of Energy and the Regents of the University of California, by the grant NASA SECTP NAG5-8136, and by the grant from Schlumberger Foundation. The work of the second author was performed in part under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. All three authors were supported in part by a grant from the TRW Foundation. The computations in this paper were performed on a 16 processor SGI Origin 2000, which was partly funded by the NSF SCREMS grant DMS-9872009.  相似文献   

19.
20.
Abstract

In this article, a new relationship is proposed for the fictitious mass of viscous dynamic relaxation (DR) method. First, incremental equations are derived for DR steps. Using transformed Gershgörin theory, a new relationship is achieved for fictitious mass of viscous DR by formulating modified time step ratio. This procedure presents a new algorithm for the viscous DR method. To evaluate the numerical efficiency of the proposed method, some 2D and 3D truss and frame structures are analyzed with elastic linear and geometrically nonlinear behaviors. Results show that by using the proposed algorithm for fictitious mass, the convergence rate of the viscous DR method is improved so that the proposed algorithm presents the structural response with lower iterations in comparison with other common DR techniques.

Communicated by Joerg Fehr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号