首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A direct approach is used to solve the Riemann problem for a quasilinear hyperbolic system of equations governing the one dimensional unsteady planar flow of an isentropic, inviscid compressible fluid in the presence of dust particles. The elementary wave solutions of the Riemann problem, that is, shock waves, rarefaction waves and contact discontinuities are derived and their properties are discussed for a dusty gas. The generalised Riemann invariants are used to find the solution between rarefaction wave and the contact discontinuity and also inside rarefaction fan. Unlike the ordinary gasdynamic case, the solution inside the rarefaction waves in dusty gas cannot be obtained directly and explicitly; indeed, it requires an extra iteration procedure. Although the case of dusty gas is more complex than the ordinary gas dynamics case, all the parallel results for compressive waves remain identical. We also compare/contrast the nature of the solution in an ordinary gasdynamics and the dusty gas flow case.  相似文献   

2.
The generalized Riemann problem for gas dynamic combustion in a neighborhood of the origin t > 0 in the (x, t) plane is considered. Under the modified entropy conditions, the unique solutions are constructed, which are the limits of the selfsimilar Zeldovich-von Neumann-Dring (ZND) combustion model. The results show that, for some cases, there are intrinsical differences between the structures of the perturbed Riemann solutions and the corresponding Riemann solutions. Especially, a strong detonation in the...  相似文献   

3.
We consider the Riemann problem for a five-equation, two-pressure (5E2P) model of non-ideal isentropic compressible gas–liquid two-phase flows. This system is more complex due to the extended thermodynamics model for van der Waals gases, that is, typical real gases for gas phase and Tait׳s equation of state for liquid phase. The overall model is strictly hyperbolic and non-conservative form. We investigate the structure of Riemann problem and construct the solution for it. To construct solution of Riemann problem approximately assuming that all waves corresponding to the genuinely non-linear characteristic fields are rarefaction and then we discuss their properties. Lastly, we discuss numerical examples and study the solution influenced by the van der Waals excluded volume.  相似文献   

4.
Self-similar solutions to the Riemann problem for water with the modified Tait equation of state are presented. The methods of Smoller for gas dynamics are employed to reduce the problem to the solution of a single non-linear equation. The same methods are used for solving the Riemann problem at a gas-water interface. In both cases the method of interval bisections affords a solution technique free of problems with convergence.  相似文献   

5.
Abstract. An approximate solution of the Riemann problem associated with a realisable and objective turbulent second-moment closure, which is valid for compressible flows, is examined. The main features of the continuous model are first recalled. An entropy inequality is exhibited, and the structure of waves associated with the non-conservative hyperbolic convective system is briefly described. Using a linear path to connect states through shocks, approximate jump conditions are derived, and the existence and uniqueness of the one-dimensional Riemann problem solution is then proven. This result enables to construct exact or approximate Riemann-type solvers. An approximate Riemann solver, which is based on Gallou?t's recent proposal is eventually presented. Some computations of shock tube problems are then discussed. Received 2 March 1999 / Accepted 24 August 2000  相似文献   

6.
传统的煤层气动力学模型多建立在欧几里得基础上,难以描述煤层气孔隙结构的复杂性和形状的不规则性。为此,以分形理论为基础,通过引入煤层基质和裂缝的分形维数来刻画煤层气孔隙结构的复杂性和吸附特性,建立了双重分形介质渗流模型,采用Douglas-Jones预估-校正法对非线性方程组进行离散,获得了无限大地层和有限地层定产量生产时拟稳态吸附模型的差分方程,求得数值解。结果表明,Douglas-Jones预估-校正法可以有效解决这类非线性模型的求解问题,获得无限大地层定产量生产时变形双重分形介质模型的数值解;分析各种分形参数下的煤层压力动态,做出了典型压力曲线图。对无限大地层,初期分形维数对压力影响不大,后期分形维数越小,压力越高。对有限地层,初期分形维数的影响明显,且分形维数越大,压力越低。压力随分形指数的减小量呈现先增大后减小的趋势,在末期压力平稳趋向同一值。  相似文献   

7.
We develop an Eulerian fixed grid numerical method for calculating multi‐material fluid flows. This approach relates to the class of interface capturing methods. The fluid is treated as a heterogeneous mixture of constituent materials, and the material interface is implicitly captured by a region of mixed cells that have arisen owing to numerical diffusion. To suppress this numerical diffusion, we propose a composite Riemann problem (CRP), which describes the decay of an initial discontinuity in the presence of a contact point between two different fluids, which is located off the initial discontinuity point. The solution to the CRP serves to calculate multi‐material no mixed numerical flux without introducing any material diffusion. We discuss the CRP solution and its implementation in the multi‐material fluid Godunov method. Numerical results show that a simple framework of the CRP greatly improves capturing material interfaces in the Godunov method and reproduces many of the advantages of more complicated interface tracking multi‐material treatments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
This paper studies the Riemann problem for a system of nonlinear degenerate wave equations in elasticity. Since the stress function is neither convex nor concave, the shock condition is degenerate. By introducing a degenerate shock under the generalized shock condition, the global solutions are constructively obtained case by case.  相似文献   

9.
The Riemann solver is the fundamental building block in the Godunov‐type formulation of many nonlinear fluid‐flow problems involving discontinuities. While existing solvers are obtained either iteratively or through approximations of the Riemann problem, this paper reports an explicit analytical solution to the exact Riemann problem. The present approach uses the homotopy analysis method to solve the nonlinear algebraic equations resulting from the Riemann problem. A deformation equation defines a continuous variation from an initial approximation to the exact solution through an embedding parameter. A Taylor series expansion of the exact solution about the embedding parameter provides a series solution in recursive form with the initial approximation as the zeroth‐order term. For the nonlinear shallow‐water equations, a sensitivity analysis shows fast convergence of the series solution and the first three terms provide highly accurate results. The proposed Riemann solver is implemented in an existing finite‐volume model with a Godunov‐type scheme. The model correctly describes the formation of shocks and rarefaction fans for both one and two‐dimensional dam‐break problems, thereby verifying the proposed Riemann solver for general implementation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
This article is to continue the present author's work (International Journal of Computational Fluid Dynamics (2009) 23 (9), 623–641) on studying the structure of solutions of the Riemann problem for a system of three conservation laws governing two-phase flows. While existing solutions are limited and found quite recently for the Baer and Nunziato equations, this article presents the first instance of an exact solution of the Riemann problem for two-phase flow in gas–liquid mixture. To demonstrate the structure of the solution, we use a hyperbolic conservative model with mechanical equilibrium and without velocity equilibrium. The Riemann problem solution for the model equations comprises a set of elementary waves, rarefaction and discontinuous waves of various types. In particular, such a solution treats both the wave structure and the intermediate states of the two-phase gas–liquid mixture. The resulting exact Riemann solver is fully non-linear, direct and complete. On this basis then, we use locally the exact Riemann solver for the two-phase flow in gas–liquid mixture within the framework of finite volume upwind Godunov methods. In order to demonstrate the effectiveness and accuracy of the proposed solver, we consider a series of test problems selected from the open literature and compare the exact and numerical results by using upwind Godunov methods, showing excellent oscillation-free results in two-phase fluid flow problems.  相似文献   

11.
In this work we analyze the reactive Riemann problem for thermally perfect gases in the deflagration or detonation regimes. We restrict our attention to the case of one irreversible infinitely fast chemical reaction; we also suppose that, in the initial condition, one state (for instance the left one) is burnt and the other one is unburnt. The indeterminacy of the deflagration regime is removed by imposing a (constant) value for the fundamental flame speed of the reactive shock. An iterative algorithm is proposed for the solution of the reactive Riemann problem. Then the reactive Riemann problem and the proposed algorithm are investigated from a numerical point of view in the case in which the unburnt state consists of a stoichiometric mixture of hydrogen and air at almost atmospheric condition. In particular, we revisit the problem of 1D plane‐symmetric steady flames in a semi‐infinite domain and we verify that the transition from one combustion regime to another occurs continuously with respect to the fundamental flame speed and the so‐called piston velocity. Finally, we use the ‘all shock’ solution of the reactive Riemann problem to design an approximate (‘all shock’) Riemann solver. 1D and 2D flows at different combustion regimes are computed, which shows that the approximate Riemann solver, and thus the algorithm we use for the solution of the reactive Riemann problem, is robust in both the deflagration and detonation regimes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, we concern about the Riemann problem for compressible no-slip drift-flux model which represents a system of quasi-linear partial differential equations derived by averaging the mass and momentum conservation laws with modified Chaplygin two-phase flows. We obtain the exact solution of Riemann problem by elaborately analyzing characteristic fields and discuss the elementary waves namely, shock wave, rarefaction wave and contact discontinuity wave. By employing the equality of pressure and velocity across the middle characteristic field, two nonlinear algebraic equations with two unknowns as gas density ahead and behind the middle wave are formed. The Newton–Raphson method of two variables is applied to find the unknowns with a series of initial data from the literature. Finally, the exact solution for the physical quantities such as gas density, liquid density, velocity, and pressure are illustrated graphically.  相似文献   

13.
In the paper, the numerical simulation of interface problems for multiple material fluids is studied. The level set function is designed to capture the location of the material interface. For multi-dimensional and multi-material fluids, the modified ghost fluid method needs a Riemann solution to renew the variable states near the interface. Here we present a new convenient and effective algorithm for solving the Riemann problem in the normal direction. The extrapolated variables are populated by Taylor series expansions in the direction. The anti-diffusive high order WENO difference scheme with the limiter is adopted for the numerical simulation. Finally we implement a series of numerical experiments of multi-material flows. The obtained results are satisfying, compared to those by other methods.The English text was polished by Boyi Wang.  相似文献   

14.
In this article, the method of differential constraintsis applied for systems written in Riemann variables. Westudied generalized simple waves. This class of solutions can beobtained by integrating a system of ordinary differentialequations. Two models from continuum mechanics are studied:traffic flow and rate-type models.  相似文献   

15.
The effect of new terms in the improved algorithm, the modified direct simulation Monte-Carlo (MDSMC) method, is investigated by simulating a rarefied binary gas mixture flow inside a rotating cylinder. Dalton law for the partial pressures contributed by each species of the binary gas mixture is incorporated into our simulation using the MDSMC method and the direct simulation Monte-Carlo (DSMC) method. Moreover, the effect of the exponent of the cosine of deflection angle (α) in the inter-molecular collision models, the variable soft sphere (VSS) and the variable hard sphere (VHS), is investigated in our simulation. The improvement of the results of simulation is pronounced using the MDSMC method when compared with the results of the DSMC method. The results of simulation using the VSS model show some improvements on the result of simulation for the mixture temperature at radial distances close to the cylinder wall where the temperature reaches the maximum value when compared with the results using the VHS model.  相似文献   

16.
掌握甲烷与二氧化碳混合气体的爆燃特性对高含二氧化碳天然气的勘探、开发和利用具有安全保障作用,对涉及甲烷和二氧化碳的其他工业过程如煤炭气化、惰化、抑爆、泄爆等应急处置和安防设计具有指导价值。为推动相关学科的进步,分类回顾了甲烷与二氧化碳混合气体爆燃特性的实验和理论研究进展,涉及爆燃范围、爆燃压强、惰化等爆燃特性的实验研究以及爆燃范围领域的理论研究,系统分析和评价了各个研究领域取得的成果、存在的问题,并从提高实验数据的完整性、可比性和适用面,理论预测方法可靠性的评价方法与指标,理论预测方法的适用面从常温常压条件向更复杂的情形扩展3个方面展望了未来的研究重点。  相似文献   

17.
We propose a well‐balanced stable generalized Riemann problem (GRP) scheme for the shallow water equations with irregular bottom topography based on moving, adaptive, unstructured, triangular meshes. In order to stabilize the computations near equilibria, we use the Rankine–Hugoniot condition to remove a singularity from the GRP solver. Moreover, we develop a remapping onto the new mesh (after grid movement) based on equilibrium variables. This, together with the already established techniques, guarantees the well‐balancing. Numerical tests show the accuracy, efficiency, and robustness of the GRP moving mesh method: lake at rest solutions are preserved even when the underlying mesh is moving (e.g., mesh points are moved to regions of steep gradients), and various comparisons with fixed coarse and fine meshes demonstrate high resolution at relatively low cost. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Using the direct simulation Monte Carlo method, the hypersonic flow of a binary gas mixture around a cylinder is investigated over a wide rarefaction range: from an almost continuum regime (at the Knudsen number Kn = 0.01) to free-molecular flow. The effect of a small admixture of heavy diatomic particles in a light gas flow on the relaxation processes near the cylinder and the heat flux is studied.  相似文献   

19.
This paper presents a new characteristic approximation to the boundary conditions, required in the solution of gas flow problems by the Law-Wendroff method. The accuracy of this and other currently used methods is assessed by a comparison with the exact solutions of two test problems  相似文献   

20.
双周期圆截面纤维复合材料平面问题的解析法   总被引:4,自引:0,他引:4  
徐耀玲  蒋持平 《力学学报》2004,36(5):596-603
结合双准周期Riemann边值问题理论与Eshelby等效夹杂原理,为双周期圆截面纤维复合材 料平面问题发展了一个实用有效的解析方法,获得了问题的全场级数解并与有限元结果进行 了比较. 该方法为非均匀材料的力学性质分析和复合材料等新材料的微结构设计提供了 一个有效的计算工具,也可用来评估有限元等数值与近似方法的精度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号