首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Chemical flooding in the petroleum industry has a larger scale of oil recovery efficiency than water flooding. On the other hand, it is far more technical, costly, and risky. Numerical reservoir simulation can be employed to conduct mechanism study, feasibility evaluation, pilot plan optimization, and performance prediction for chemical flooding to improve recovery efficiency and reduce operational costs. In this article, we study numerical simulation of chemical flooding such as alkaline, surfactant, polymer, and foam (ASP+foam) flooding. The main displacement mechanisms in this type of flooding are interfacial tension lowering, capillary desaturation, chemical synergetic effects, and mobility control. The model of chemical flooding involves such physicochemical phenomena as dispersion, diffusion, adsorption, chemical reactions, and in situ generation of surfactant from acidic crude oil. The numerical simulator is based on a sequential solution approach that solves both pressure and compositions implicitly, and is applied to three experiments, a chemical flow without mass transfer between phases, a laboratory sandstone core, and an ASP+foam displacement problem with mass transfer, and to a real oilfield. A comparison with UTCHEM is also performed. These applications and comparison indicate that this numerical simulator is practical, efficient, and accurate for simulating complex chemical flooding processes.   相似文献   

2.

Charged porous media are pervasive, and modeling such systems is mathematically and computationally challenging due to the highly coupled hydrodynamic and electrochemical interactions caused by the presence of charged solid surfaces, ions in the fluid, and chemical reactions between the ions in the fluid and the solid surface. In addition to the microscopic physics, applied external potentials, such as hydrodynamic, electrical, and chemical potential gradients, control the macroscopic dynamics of the system. This paper aims to give fresh overview of modeling pore-scale and Darcy-scale coupled processes for different applications. At the microscale, fundamental microscopic concepts and corresponding mass and momentum balance equations for charged porous media are presented. Given the highly coupled nonlinear physiochemical processes in charged porous media as well as the huge discrepancy in length scales of these physiochemical phenomena versus the application, numerical simulation of these processes at the Darcy scale is even more challenging than the direct pore-scale simulation of multiphase flow in porous media. Thus, upscaling the microscopic processes up to the Darcy scale is essential and highly required for large-scale applications. Hence, we provide and discuss Darcy-scale porous medium theories obtained using the hybrid mixture theory and homogenization along with their corresponding assumptions. Then, application of these theoretical developments in clays, batteries, enhanced oil recovery, and biological systems is discussed.

  相似文献   

3.
We investigate the behavior of dissipative particle dynamics(DPD) within different scaling regimes by numerical simulations. The paper extends earlier analytical findings of Ripoll, M., Ernst, M. H., and Espa?nol, P.(Large scale and mesoscopic hydrodynamics for dissipative particle dynamics. Journal of Chemical Physics, 115(15),7271–7281(2001)) by evaluation of numerical data for the particle and collective scaling regimes and the four different subregimes. DPD simulations are performed for a range of dynamic overlapping parameters. Based on analyses of the current auto-correlation functions(CACFs), we demonstrate that within the particle regime at scales smaller than its force cut-off radius, DPD follows Langevin dynamics. For the collective regime,we show that the small-scale behavior of DPD differs from Langevin dynamics. For the wavenumber-dependent effective shear viscosity, universal scaling regimes are observed in the microscopic and mesoscopic wavenumber ranges over the considered range of dynamic overlapping parameters.  相似文献   

4.
As gas flooding becomes a more viable means of enhanced oil recovery, it is important to identify and understand the pore-scale flow mechanisms, both for the development of improved gas flooding applications and for the predicting phase mobilisation under secondary and tertiary gas flooding. The purpose of this study was to visually investigate the pore-level mechanisms of oil recovery by near-miscible secondary and tertiary gas floods. High-pressure glass micromodels and model fluids representing a near-miscible fluid system were used for the flow experiments. A new pore-scale recovery mechanism was identified which significantly contributed to oil recovery through enhanced flow and cross-flow between the bypassed pores and the injected gas. This mechanism is strongly related to a very low gas/oil interfacial tension (IFT), perfect wetting conditions and simultaneous flow of gas and oil in the same pore, all of which occur as the gas/oil critical point is approached. The results of this study helps us to better understand the pore-scale mechanisms of oil recovery in very low-IFT (near-miscible) systems. In particular we show that in near-miscible gas floods, behind the main gas front, the recovery of the oil continues by cross-flow from the bypassed pores into the main flow stream and as a result almost all of the oil, which has been contacted by the gas, could be recovered. Our observations in high-pressure micromodel experiments have demonstrated that this mechanism can only occur in near-miscible processes (as opposed to immiscible and completely miscible processes), which makes oil displacement by near-miscible gas floods a very effective process.  相似文献   

5.
Many applications involve the flow of non-Newtonian fluids in porous, subsurface media including polymer flooding in enhanced oil recovery, proppant suspension in hydraulic fracturing, and the recovery of heavy oils. Network modeling of these flows has become the popular pore-scale approach for understanding first-principles flow behavior, but strong nonlinearities have prevented larger-scale modeling and more time-dependent simulations. We investigate numerical approaches to solving these nonlinear problems and show that the method of fixed-point iteration may diverge for shear-thinning fluids unless sufficient relaxation is used. It is also found that the optimal relaxation factor is exactly equal to the shear-thinning index for power-law fluids. When the optimal relaxation factor is employed it slightly outperforms Newton??s method for power-law fluids. Newton-Raphson is a more efficient choice (than the commonly used fixed-point iteration) for solving the systems of equations associated with a yield stress. It is shown that iterative improvement of the guess values can improve convergence and speed of the solution. We also develop a new Newton algorithm (Variable Jacobian Method) for yield-stress flow which is orders of magnitude faster than either fixed-point iteration or the traditional Newton??s method. Recent publications have suggested that minimum-path search algorithms for determining the threshold pressure gradient (e.g., invasion percolation with memory) greatly underestimate the true threshold gradient when compared to numerical solution of the flow equations. We compare the two approaches and reach the conclusion that this is incorrect; the threshold gradient obtained numerically is exactly the same as that found through a search of the minimum path of throat mobilization pressure drops. This fact can be proven mathematically; mass conservation is only preserved if the true threshold gradient is equal to that found by search algorithms.  相似文献   

6.
Wettability alternation phenomena is considered one of the most important enhanced oil recovery (EOR) mechanisms in the chemical flooding process and induced by the adsorption of surfactant on the rock surface. These phenomena are studied by a mesoscopic method named as dissipative particle dynamics (DPD). Both the alteration phenomena of water-wet to oil-wet and that of oil-wet to water-wet are simulated based on reasonable definition of interaction parameters between beads. The wetting hysteresis phenomenon and the process of oil-drops detachment from rock surfaces with different wettability are simulated by adding long-range external forces on the fluid particles. The simulation results show that, the oil drop is liable to spread on the oil-wetting surface and move in the form of liquid film flow, whereas it is likely to move as a whole on the waterwetting surface. There are the same phenomena occuring in wettability-alternated cases. The results also show that DPD method provides a feasible approach to the problems of seepage flow with physicochemical phenomena and can be used to study the mechanism of EOR of chemical flooding.  相似文献   

7.
Recovery of oil from the blocks of an initially oil-wet, naturally fractured, reservoir as a result of counter-current flow following introduction of aqueous wettability-altering surfactant into the fracture system is considered, as an example of a practical process in which phenomena acting at the single pore-scale are vital to the economic displacement of oil at the macroscopic scale. A Darcy model for the process is set up, and solutions computed illustrating the recovery rate controlling role of the bulk diffusion of surfactant. A central ingredient of this model is the capillary pressure relation, linking the local values of the pressure difference between the oleic and aqueous phases, the aqueous saturation and the surfactant concentration. Using ideas from single capillary models of oil displacement from oil-wet tubes by wettability-altering surfactant, we speculate that the use of a capillary pressure function, with dependences as assumed, may not adequately represent the Darcy scale consequences of processes acting at the single pore-scale. Multi-scale simulation, resolving both sub-pore and multi-pore flow processes may be necessary to resolve this point. Some general comments are made concerning the issues faced when modelling complex displacement processes in porous media starting from the pore-scale and working upwards.  相似文献   

8.
The low-interfacial tension flow through porous media occurs in surfactant-based enhanced oil recovery (EOR), soil clean-up, underground removal of the non-aqueous phase liquid and dense non-aqueous phase liquid, etc. In surfactant-based EOR processes, numerous works have been carried out to characterize - either qualitatively or quantitatively - the micro- and macro-scale flow behavior. What has been lacking is to link the statistics of oil blobs population (e.g., distribution of blob length and diameter) to the pore-scale phenomena and macro-scale quantities. In particular, no work has been reported to elucidate the effect of the ratio of pore body to throat diameter (i.e., aspect ratio) on the pore-scale characterization based on the blobs population statistics. The significance of the aspect ratio lies in that it describes the geometry of a porous medium and is one of the foremost morphological features. The aspect ratio is also one of the fundamental factors governing the pore-level events. This study presents the effect of aspect ratio on the statistical distribution of the blob length and equivalent diameter and links the blobs population statistics to the observed pore-level events. The pore-scale variation of the ratio of viscous-to-capillary forces acted on the oil blobs at the threshold of displacement is utilized to characterize the effect of blob length distribution at different aspect ratios. It also provides some insight into correlating the change in oil recovery efficiency and capillary number, by change in aspect ratio, with the change in blobs population statistics.  相似文献   

9.
This paper presents a numerical model for simulating the pore-scale transport and infiltration of dilute suspensions of particles in a granular porous medium under the action of hydrodynamic and gravitational forces. The formulation solves the Stokes’ flow equations for an incompressible fluid using a fixed grid, multigrid finite difference method and an embedded boundary technique for modeling particle–fluid coupling. The analyses simulate a constant flux of the fluid suspension through a cylindrical model pore. Randomly generated particles are collected within the model pore, initially through contact and attachment at the grain surface (pore wall) and later through mounding close to the pore inlet. Simple correlations have been derived from extensive numerical simulations in order to estimate the volume of filtered particles that accumulate in the pore and the differential pressure needed to maintain a constant flux through the pore. The results show that particle collection efficiency is correlated with the Stokes’ settling velocity and indirectly through the attachment probability with the particle–grain surface roughness. The differential pressure is correlated directly with the maximum mound height and indirectly with particle size and settling velocity that affect mound packing density. Simple modification factors are introduced to account for pore length and dip angle. These parameters are used to characterize pore-scale infiltration processes within larger scale network models of particle transport in granular porous media in a companion paper. Articlenote: Currently at GZA GeoEnvironmental Inc., 1 Edgewater Drive, Norwood, MA 02062, U.S.A.  相似文献   

10.
天然气驱长岩心室内实验研究   总被引:1,自引:0,他引:1  
低渗透油藏注水开发效果差、采收率低,而采用气驱技术是动用此类难采储量的有效方法之一。本文利用长岩心实验模型,进行了物理模拟研究,得到了该油藏在纯气驱、纯水驱、完全水驱后气水交替驱、原始状态下气水交替驱和油藏目前注水倍数下气水交替驱等方式下的采收率和压力等变化情况,为油藏选择合理的开采方式提供了依据,并且为进一步的数值模拟工作提供了基础数据。  相似文献   

11.
In spite of the role of alkali in enhancing oil recovery (EOR), the formation of precipitation during alkaline-surfactant-polymer (ASP) flooding can severely do harm to the stratum of oil reservoirs, which has been observed in situ tests of oil fields such as scale deposits found in oil stratum and at the bottom of oil wells. On the other hand, remarkable variation of stratum parameters, e.g., pore radius, porosity, and permeability due to scale formation consider-ably affects seepage flow and alkaline flooding process in return. The objective of this study is to firstly examine these mutual influential phenomena and corresponding mecha-nisms along with EOR during alkaline flooding when the effects of precipitation are no longer negligible. The chem-ical kinetic theory is applied for the specific fundamental reactions to describe the process of rock dissolution in silica-based reservoirs. The solubility product principle is used to analyze the mechanism of alkali scale formation in flooding. Then a 3D alkaline flooding coupling model accounting for the variation of porosity and permeability is established to quantitatively estimate the impact of alkali scales on reser-voir stratum. The reliability of the present model is verified in comparison with indoor experiments and field tests of the Daqing oil field. Then, the numerical simulations on a 1/4 well group in a 5-spot pattern show that the precipitation grows with alkali concentration, temperature, and injection pressure and, thus, reduces reservoir permeability and oil recovery correspondingly. As a result, the selection of alkali with a weak base is preferable in ASP flooding by tradeoff strategy.  相似文献   

12.
13.
A novel concept for modeling pore-scale phenomena included in several enhanced oil recovery (EOR) methods is presented. The approach combines a quasi-static invasion percolation model with a single-phase dynamic transport model in order to integrate mechanistic chemical oil mobilization methods. A framework is proposed that incorporates mobilization of capillary trapped oil. We show how double displacement of reservoir fluids can contribute to mobilize oil that are capillary trapped after waterflooding. In particular, we elaborate how the physics of colloidal dispersion gels (CDG) or linked polymer solutions (LPS) is implemented. The linked polymer solutions consist of low concentration partially hydrolyzed polyacrylamide polymer crosslinked with aluminum citrate. Laboratory core floods have shown demonstrated increased oil recovery by injection of linked polymer solution systems. LPS consist of roughly spherical particles with sizes in the nanometer range (50–150 nm). The LPS process involve mechanisms such as change in rheological properties effect, adsorption and entrapment processes that can lead to a microscopic diversion and mobilization of waterflood trapped oil. The purpose is to model the physical processes occurring on pore scale during injection of linked polymer solutions. A sensitivity study has also been performed on trapped oil saturation with respect to wettability status to analyze the efficiency of LPS on different wettability conditions. The network modeling results suggest that weakly wet reservoirs are more suitable candidates for performing linked polymer solution injection.  相似文献   

14.
15.
16.
A cold flow model of an 8 MW dual fluidized bed (DFB) system is simulated using the commercial computational particle fluid dynamics (CPFD) software package Barracuda. The DFB system comprises a bubbling bed connected to a fast fluidized bed with the bed material circulating between them. As the hydrodynamics in hot DFB plants are complex because of high temperatures and many chemical reaction processes, cold flow models are used. Performing numerical simulations of cold flows enables a focus on the hydrodynamics as the chemistry and heat and mass transfer processes can be put aside. The drag law has a major influence on the hydrodynamics, and therefore its influence on pressure, particle distribution, and bed material recirculation rate is calculated using Barracuda and its results are compared with experimental results. The drag laws used were energy-minimization multiscale (EMMS), Ganser, Turton–Levenspiel, and a combination of Wen–Yu/Ergun. Eleven operating points were chosen for that study and each was calculated with the aforementioned drag laws. The EMMS drag law best predicted the pressure and distribution of the bed material in the different parts of the DFB system. For predicting the bed material recirculation rate, the Ganser drag law showed the best results. However, the drag laws often were not able to predict the experimentally found trends of the bed material recirculation rate. Indeed, the drag law significantly influences the hydrodynamic outcomes in a DFB system and must be chosen carefully to obtain meaningful simulation results. More research may enable recommendations as to which drag law is useful in simulations of a DFB system with CPFD.  相似文献   

17.
认识双重多孔介质中油水两相微观渗流机制是回答形成什么类型的裂隙网络可提高油藏采收率的关键. 微裂隙的分布可以提高多孔介质的绝对渗透率,但对于基质孔隙中的流体介质,微裂隙的存在会引起多孔介质中局部流体压力和流场的变化,导致局部流动以微裂隙流动为主,甚至出现窜流现象,降低驱油效率. 本文基于孔与裂隙双重网络模型,在网络进口设定两条平行等长且具有一定间隔的微裂隙,分析微裂隙的相对间隔(微裂隙之间距离/喉道长度)和微裂隙相对长度(微裂隙长度/喉道长度)对于微观渗流特征的影响. 结果表明:随微裂隙相对长度的增加,出现驱油效率逐渐降低,相对渗透率曲线中的油水共渗区水饱和度和等渗点增加,油水两相的共渗范围减小等现象;随着微裂隙之间相对间隔增大,周围越来越多的基质孔穴间的压力差减小,在毛管压力的限制下,驱替相绕过这些区域,而导致水窜现象.   相似文献   

18.
Microbial enhanced oil recovery (MEOR) is a technology that could potentially increase the tertiary recovery of oil from mature oil formations. However, the efficacy of this technology in fractional-wet systems is unknown, and the mechanisms involved in oil mobilization therefore need further investigation. Our MEOR strategy consists of the injection of ex situ produced metabolic byproducts produced by Bacillus mojavensis JF-2 (which lower interfacial tension (IFT) via biosurfactant production) into fractional-wet cores containing residual oil. Two different MEOR flooding solutions were tested; one solution contained both microbes and metabolic byproducts while the other contained only the metabolic byproducts. The columns were imaged with X-ray computed microtomography (CMT) after water flooding, and after MEOR, which allowed for the evaluation of the pore-scale processes taking place during MEOR. Results indicate that the larger residual oil blobs and residual oil held under relatively low capillary pressures were the main fractions recovered during MEOR. Residual oil saturation, interfacial curvatures, and oil blob sizes were measured from the CMT images and used to develop a conceptual model for MEOR in fractional-wet systems. Overall, results indicate that MEOR was effective at recovering oil from fractional-wet systems with reported additional oil recovered (AOR) values between 44 and 80%; the highest AOR values were observed in the most oil-wet system.  相似文献   

19.
再利用地下滞留聚合物是聚合物驱之后进一步提高原油采收率的新途径。基于油水两相流网络模拟模型,综合考虑聚合物渗流机理建立起聚合物驱微观模拟模型。用微观数值模拟手段研究了地下滞留聚合物分布规律及影响因素,为有效地开采聚合物驱后剩余油、合理利用滞留地下聚合物提供必要的依据。模拟结果表明,由于吸附和捕集作用将引起大量聚合物滞留在孔喉中,滞留聚合物占注入聚合物的61.7%。总体上看,大孔喉中聚合物滞留量较大,但滞留聚合物浓度较小。孔喉半径和形状因子为聚合物滞留的主要影响因素,孔喉滞留聚合物浓度与孔喉半径和形状因子平方根的乘积成反比。  相似文献   

20.

Three-phase flow in porous media is encountered in many applications including subsurface carbon dioxide storage, enhanced oil recovery, groundwater remediation and the design of microfluidic devices. However, the pore-scale physics that controls three-phase flow under capillary dominated conditions is still not fully understood. Recent advances in three-dimensional pore-scale imaging have provided new insights into three-phase flow. Based on these findings, this paper describes the key pore-scale processes that control flow and trapping in a three-phase system, namely wettability order, spreading and wetting layers, and double/multiple displacement events. We show that in a porous medium containing water, oil and gas, the behaviour is controlled by wettability, which can either be water-wet, weakly oil-wet or strongly oil-wet, and by gas–oil miscibility. We provide evidence that, for the same wettability state, the three-phase pore-scale events are different under near-miscible conditions—where the gas–oil interfacial tension is ≤?1 mN/m—compared to immiscible conditions. In a water-wet system, at immiscible conditions, water is the most-wetting phase residing in the corners of the pore space, gas is the most non-wetting phase occupying the centres, while oil is the intermediate-wet phase spreading in layers sandwiched between water and gas. This fluid configuration allows for double capillary trapping, which can result in more gas trapping than for two-phase flow. At near-miscible conditions, oil and gas appear to become neutrally wetting to each other, preventing oil from spreading in layers; instead, gas and oil compete to occupy the centre of the larger pores, while water remains connected in wetting layers in the corners. This allows for the rapid production of oil since it is no longer confined to movement in thin layers. In a weakly oil-wet system, at immiscible conditions, the wettability order is oil–water–gas, from most to least wetting, promoting capillary trapping of gas in the pore centres by oil and water during water-alternating-gas injection. This wettability order is altered under near-miscible conditions as gas becomes the intermediate-wet phase, spreading in layers between water in the centres and oil in the corners. This fluid configuration allows for a high oil recovery factor while restricting gas flow in the reservoir. Moreover, we show evidence of the predicted, but hitherto not reported, wettability order in strongly oil-wet systems at immiscible conditions, oil–gas–water, from most to least wetting. At these conditions, gas progresses through the pore space in disconnected clusters by double and multiple displacements; therefore, the injection of large amounts of water to disconnect the gas phase is unnecessary. We place the analysis in a practical context by discussing implications for carbon dioxide storage combined with enhanced oil recovery before suggesting topics for future work.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号