共查询到20条相似文献,搜索用时 15 毫秒
1.
Details of the turbulent flow in a 1:8 aspect ratio rectangular duct at a Reynolds number of approximately 5800 were investigated both numerically and experimentally. The three-dimensional mean velocity field and the normal stresses were measured at a position 50 hydraulic diameters downstream from the inlet using laser doppler velocimetry (LDV). Numerical simulations were carried out for the same flow case assuming fully developed conditions by imposing cyclic boundary conditions in the main flow direction. The numerical approach was based on the finite volume technique with a non-staggered grid arrangement and the SIMPLEC algorithm. Results have been obtained with a linear and a non-linear (Speziale) k–ε model, combined with the Lam–Bremhorst damping functions for low Reynolds numbers. The secondary flow patterns, as well as the magnitude of the main flow and overall parameters predicted by the non-linear k–ε model, show good agreement with the experimental results. However, the simulations provide less anisotropy in the normal stresses than the measurements. Also, the magnitudes of the secondary velocities close to the duct corners are underestimated. © 1998 John Wiley & Sons, Ltd. 相似文献
2.
3.
An unsteady numerical simulation was performed for locally forced separated and reattaching flow over a backward-facing step. The local forcing was given to the separated and reattaching flow by means of a sinusoidally oscillating jet from a separation line. A version of the k––fμ model was employed, in which the near-wall behavior without reference to distance and the nonequilibrium effect in the recirculation region were incorporated. The Reynolds number based on the step height (H) was fixed at ReH=33 000, and the forcing frequency was varied in the range 0StH2. The predicted results were compared and validated with the experimental data of Chun and Chun. It was shown that the unsteady locally forced separated and reattaching flows are predicted reasonably well with the k––fμ model. To characterize the large-scale vortex evolution due to the local forcing, numerical flow visualizations were carried out. 相似文献
4.
李国彦 《应用数学和力学(英文版)》1990,11(12):1167-1170
A numerical simulation is presented for a thermal plasma reactor with particle-trajectory model in this paper.Turbulance is considered by using simple SGS model.Thegoverning equations are solved by means of the algorithm of SIMPLER.The calculatedresults give the velocity and the temperature fields within plasma reactor,and thetrajectories of the injected particles. 相似文献
5.
I.IntroductionBinghamfluidisonebranchofnon-Newtonianfluid,suchascrudeparaffinoil,highsediment--ladenwaterflow,highconcentrationmudandthelikewhicharetransportedinpipelinesinmanyindustries,soit'sofgreatsignificancetostudytheflowmechanismsofBinghamfluid.Tsaietal.II]studiedthelinkagebetweenBinghamfluidandpluggedflow.Wangetal.I2]measuredtheturbulencestructureofBinghammud.Mengetal.[3]researchedthekineticenergycorrectionfactorofBinghamfluidinacircularpipe.However,thestudyofBinghamfluidsofarisn't… 相似文献
6.
A 3-D nonlinear problem of supercavitating flow past an axisymmetric body at a small angle of attack is investigated by means
of the perturbation method and Fourier-cosine-expansion method. The first three order perturbation equations are derived in
detail and solved numerically using the boundary integral equation method and iterative techniques. Computational results
of the hydrodynamic characteristics and cavity shapes of each order are presented for nonaxisymmetric supercavitating flow
past cones with various apex-angles at different cavitation numbers. The numerical results are found in good agreement with
experimental data.
The project supported by the National Natural Science Foundation of China 相似文献
7.
In transonic flow conditions, the shock wave/turbulent boundary layer interaction and flow separations on wing upper surface induce flow instabilities, ‘buffet’, and then the buffeting (structure vibrations). This phenomenon can greatly influence the aerodynamic performance. These flow excitations are self‐sustained and lead to a surface effort due to pressure fluctuations. They can produce enough energy to excite the structure. The objective of the present work is to predict this unsteady phenomenon correctly by using unsteady Navier–Stokes‐averaged equations with a time‐dependent turbulence model based on the suitable (k–ε) turbulent eddy viscosity model. The model used is based on the turbulent viscosity concept where the turbulent viscosity coefficient (Cμ) is related to local deformation and rotation rates. To validate this model, flow over a flat plate at Mach number of 0.6 is first computed, then the flow around a NACA0012 airfoil. The comparison with the analytical and experimental results shows a good agreement. The ONERA OAT15A transonic airfoil was chosen to describe buffeting phenomena. Numerical simulations are done by using a Navier–Stokes SUPG (streamline upwind Petrov–Galerkin) finite‐element solver. Computational results show the ability of the present model to predict physical phenomena of the flow oscillations. The unsteady shock wave/boundary layer interaction is described. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
8.
It is assumed in this paper that for a high Reynolds number nearly homogeneouswind flow, the Reynolds stresses are uniquely related to the mean velocity gradientsand the two independent turbulent scaling parameters k and E. By applying dimensionalanalysis and owing to the Cayley-Hamilton theorem for tensors, a new turbulenceenclosure model so-called the axtended k-ε model has been developed. The coefficientsof the model expression were detemined by the wind tunnel experimental data ofhomogeneous shear turbulent flow. The model was compared with the standard k-εmodel in in composition and the prediction of the Reynold’s normal Stresses. Using thenew model the numerical simulation of wind flow around a square cross-section tallbuilding was performed. The results show that the extended k-ε model improves theprediction of wind velocities around the building the building and wind pressures on the buildingenvelope. 相似文献
9.
J. A. Somers 《Applied Scientific Research》1993,51(1-2):127-133
With the invention of the Hexagonal Lattice Gas it was hoped that this new technique would facilitate direct simulation of turbulent flow. In the past years, however, we have learned about its barriers on numerical accuracy and computational efficiency, which cannot easily be taken. The work on lattice gases has evolved in the introduction of the lattice-Boltzmann scheme. With the appropriate refinements this scheme provides the essential balance between robustness and numerical accuracy and enables us to simulate three-dimensional time-dependent flows at Reynolds numbers up to 50000. 相似文献
10.
A direct numerical simulation of fully developed turbulent plane Couette flow has been performed. Unsteady large-scale structures, which contributed to the instantaneous energy level, were observed. These evolving and drifting vortical structures vanished after time-averaging, and the resulting mean velocity and streamwise turbulence intensity compared favourably with recent laboratory data. 相似文献
11.
Fully developed incompressible turbulent flow in a conical diffuser having a total divergence angle of 8° and an area ratio
of 4∶1 has been simulated by ak-ε turbulence model with high Reynolds number and adverse pressure gradient. The research has been done for pipe entry Reynolds
numbers of 1.16×105 and 2.93×105. The mean flow velocity and turbulence energy are predicted successfully and the advantage of Boundary Fit Coordinates approach
is discussed. Furthermore, thek-ε turbulence model is applied to a flow in a conical diffuser having a total divergence angle of 30° with a perforated screen.
A simplified mathematical model, where only the pressure drop is considered, has been used for describing the effect of the
perforated screen. The optimum combination of the resistance coefficient and the location of the perforated screen is predicted
for high diffuser efficiency or the uniform velocity distribution. 相似文献
12.
In this paper, turbulence in a complicated pipe is simulated by using the k-ε model. The ladder-like mesh approximation is used to solve the problem of complicated boundary with the result of numerical simulation favorable. Two computational examples are given to validate the strong adaptability and stability of k-ε model. 相似文献
13.
Four turbulence models, namely, the basic and nonlinear stress-transport models and the basic and anisotropick-ε models, have been tested in the case of interaction between a longitudinal vortex pair and a flat-plate boundary layer.
The results of their predictions were compared with Mehta and Bradshaw's measurements. In this paper, part of the results
involving those of the nonlinear stress-transport model and anisotropick-ε model are presented and discussed.
The project supported by the National Natural Science Foundation of China under Contract No. 19132012 相似文献
14.
This paper applies the higher‐order bounded numerical scheme Weighted Average Coefficients Ensuring Boundedness (WACEB) to simulate two‐ and three‐dimensional turbulent flows. In the scheme, a weighted average formulation is used for interpolating the variables at cell faces and the weighted average coefficients are determined from a normalized variable formulation and total variation diminishing (TVD) constraints to ensure the boundedness of the solution. The scheme is applied to two turbulent flow problems: (1) two‐dimensional turbulent flow around a blunt plate; and (2) three‐dimensional turbulent flow inside a mildly curved U‐bend. In the present study, turbulence is evaluated by using a low‐Reynolds number version of the k–ω model. For the flow simulation, the QUICK scheme is applied to the momentum equations while either the WACEB scheme (Method 1) or the UPWIND scheme (Method 2) is used for the turbulence equations. The present study shows that the WACEB scheme has at least second‐order accuracy while ensuring boundedness of the solutions. The present numerical study for a pure convection problem shows that the ‘TVD’ slope ranges from 2 to 4. For the turbulent recirculating flow, two different mixed procedures (Method 1 and Method 2) produce a substantial difference for the mean velocities as well as for the turbulence kinetic energy. Method 1 predicts better results than Method 2 does, comparing the analytical solution and the experimental data. For the turbulent flow inside the mildly curved U‐bend, although the predictions of velocity distributions with two procedures are very close, a noticeable difference of turbulence kinetic energy is exhibited. It is noticed that the discrepancy exists between numerical results and the experimental data. The reason is the limit of the two‐equation turbulence model to such complex turbulent flows with extra strain‐rates. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
15.
Towards a new partially integrated transport model for coarse grid and unsteady turbulent flow simulations 总被引:1,自引:0,他引:1
A new two-equation model is proposed for large eddy simulations (LESs) using coarse grids. The modeled transport equations are obtained from a direct transposition of well-known statistical models by using multiscale spectrum splitting given by the filtering operation applied to the Navier–Stokes equations. The model formulation is compatible with the two extreme limits that are on one hand a direct numerical simulation and on the other hand a full statistical modeling. The characteristic length scale of subgrid turbulence is no longer given by the spatial discretization step size, but by the use of a dissipation equation. The proposed method is applied to a transposition of the well-known k- statistical model, but the same method can be developed for more advanced closures. This approach is intended to contribute to non-zonal hybrid models that bridge Reynolds-averaged Navier–Stokes (RANS) and LES, by using a continuous change rather than matching zones. The main novelty in the model is the derivation of a new equation for LES that is formally consistent with RANS when the filter width is very large. This approach is dedicated to applications to non-equilibrium turbulence and coarse grid simulations. An illustration is made of large eddy simulations of turbulence submitted to periodic forcing. The model is also an alternative approach to hybrid models. PACS 47.27.Eq 相似文献
16.
17.
J. G. M. Eggels J. Westerweel F. T. M. Nieuwstadt R. J. Adrian 《Applied Scientific Research》1993,51(1-2):319-324
Fully developed turbulent pipe flow at low Re-number is studied by means of direct numerical simulation (DNS). In contrast to many previous DNS's of turbulent flows in rectangular geometries, the present DNS code, developed for a cylindrical geometry, is based on the finite volume technique rather than being based on a spectral method. The statistical results are compared with experimental data obtained with two different experimental techniques. The agreement between numerical and experimental results is found to be good which indicates that the present DNS code is suited for this kind of numerical simulations. 相似文献
18.
Local isotropy theory is examined using direct numerical simulation in a fully developed pipe flow at two Reynolds numbers Reτ=1285.6 and 684.8. The approach to local isotropy is assessed with reference to the two Kolmogorov classical equations for longitudinal and transverse velocity structure functions. The results for the second‐order longitudinal structure functions in both the dissipative and inertial ranges indicate an improved agreement with the local isotropy hypothesis as the centreline is approached. However, the transverse structure functions satisfy isotropy neither in the dissipative range or in the inertial range. The distribution of the longitudinal and transverse structure functions also shows a substantial Reynolds number dependance in the logarithmic region of the flow and beyond. The results for the third‐order longitudinal structure function demonstrate an increased Reynolds number influence, and a deteriorating tendency to local isotropy for large separations. Contour images of axial velocity differences in the dissipative and inertial ranges have exhibited interesting patterns in relation to those of the instantaneous axial velocity. Finally, the results obtained in this investigation are in very good agreement with other published experimental and numerical data on channel and duct flows. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
19.
M. M. Enayet M. M. Gibson A. M. K. P. Taylor M. Yianneskis 《International Journal of Heat and Fluid Flow》1982,3(4):213-219
Laser-Doppler measurements are reported for laminar and turbulent flow through a 90° bend of circular cross-section with mean radius of curvature equal to 2.8 times the diameter. The measurements were made in cross-stream planes 0.58 diameters upstream of the bend inlet plane, in 30, 60 and 75° planes in the bend and in planes one and six diameters downstream of the exit plane. Three sets of data were obtained: for laminar flow at Reynolds numbers of 500 and 1093 and for turbulent flow at the maximum obtainable Reynolds number of 43 000. The results show the development of strong pressure-driven secondary flows in the form of a pair of counter-rotating vortices in the streamwise direction. The strength and character of the secondary flows were found to depend on the thickness and nature of the inlet boundary layers, inlet conditions which could not be varied independently of Reynolds number. The quantitative anemometer measurements are supported by flow visualization studies. Refractive index matching at the fluid-wall interface was not used; the measurements consist, therefore, of streamwise components of mean and fluctuating velocities only, supplemented by wall pressure measurements for the turbulent flow. The displacement of the laser measurement volume due to refraction is allowed for in simple geometrical calculations. The results are intenden for use as benchmark data for calibrating flow calculation methods. 相似文献
20.
Among the salient features of shear-driven plane Couette flow is the constancy of the total shear stress (viscous and turbulent) across the flow. This constancy gives rise to a quasi-homogenous core region, which makes the bulk of the flow substantially different from pressure-driven Poiseuille flow. The present second-moment closure study addresses the conflicting hypotheses relating to turbulent Couette flow. The inclusion of a new wall-proximity function in the wall-reflection part of the pressure-strain model seems mandatory, and the greement with recent experimental and direct numerical simulation (DNS) results is encouraging. Analysis of model computations in the range 750 ≤ Re ≤ 35,000 and comparisons with low-Re DNS data suggest that plane Couette flow exhibits a local-equilibrium core region, in which anisotropic, homogeneous turbulence prevails. However, the associated variation of the mean velocity in the core, as obtained by the model, conflicts with the intuitively appealing assumption of homogeneous mean shear. The constancy of the velocity gradient exhibited by the DNS therefore signals a deficiency in the modeled transport equation for the energy dissipation rate. 相似文献