首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three theoretical models were advanced for the dynamics of molecular multiphoton excitation: (i) The zero-order optically active mode connected by intramolecular random anharmonic couplings to a background manifold. (ii) Molecular eigenstates coupled by random radiative transition dipole moments. (iii) The kinetic master equation approach. It is demonstrated that in the Markoffian limit, as long as the intramolecular vibrational relaxation width is small relative to the Rabi frequency, these three approaches are equivalent. In the case of high-field excitation, coherent quantum effects are exhibited even in a randomly coupled system. Resurrection of the quantum oscillations and coherent pumping can be exhibited in intense field excitation on the time scale of intramolecular vibrational relaxation.  相似文献   

2.
Lutz S  Meuwly M 《Chemphyschem》2012,13(1):305-313
The photodissociation dynamics of small molecules in the gas and condensed phase is an important source of information for better characterizing intermolecular interactions. Herein, classical molecular dynamics simulations with provisions to follow reactive processes between different electronic states are used to probe the wavelength dependence of product state distributions after laser excitation of ClCN. It is found that the maximum of the rotational excitation distribution P(j) of the CN product shifts to lower j-values with increasing wavelength and the width of the distribution narrows. Both observations are in accord with earlier experiments and provide improvements over previous theoretical treatments of the process with the same interaction potentials. For the reaction in a water droplet, strong quenching of rotational excitation is found.  相似文献   

3.
Light-induced processes in biological molecules, which occur naturally in continuous incoherent light, are often studied using pulsed coherent light sources. With a focus on timescales, the relationship between excitation due to these two types of light sources is examined through a uniform minimal model of the photoisomerization of retinal in rhodopsin, induced by either coherent laser light or low level incoherent light (e.g. moonlight). Realistic timescales for both processes are obtained and a kinetic scheme involving rates for both coherent and incoherent light excitation is introduced, placing all timescales into a uniform framework. The rate limiting step in the natural light-absorption process is shown to be the low incoherent photon flux.  相似文献   

4.
We have introduced a model of two indistinguishable quantum oscillators (IQO) and examined several processes of nuclear excitations in atomic transitions. These processes are: (i) nuclear excitation in an electron transition, (ii) radiationless transitions in muonic atoms, (iii) nuclear excitation in positron-electron annihilation, and (iv) inelastic photoelectric effect. Predictions of our IQO model for these processes are in very good agreement with the available experimental data.  相似文献   

5.
Stimulated Raman Adiabatic Passage (STIRAP) is a technique that is capable of transferring an almost entire atomic or molecular population from one quantum level to another by a coherent two-step excitation process. The most remarkable property of this technique is that it is applicable to situations in which the intermediate atomic or molecular state is exposed to a large loss rate. However, the STIRAP process has not yet been used for laser spectrochemical analysis. As a part of the ongoing development of new laser-based spectrometric techniques, this article demonstrates how a previously published simulation program, DensMat, can be used to model STIRAP processes in atoms under various collisional and laser bandwidth conditions.  相似文献   

6.
Motivated originally by the goal of steering a photoreaction into desired product channels, the concept of coherent control is to adapt the spectral and temporal characteristics of the excitation light to the inherent molecular resonances and dynamics, such that these can be selectively addressed and manipulated. In the last decade, the ultrafast dynamics of many atomic and molecular quantum systems in the gas and condensed phase have been controlled successfully. Motivations in chemistry are now 1) to perform spectroscopy by coherent control, which requires a deeper understanding of control mechanisms, 2) to treat more complex, biological photoreactions, and 3) the pragmatic use of coherent control techniques, for example, for pulse compression or enhanced contrast in multiphoton microscopy. As examples for 1) and 2) we review here the combined effort and interplay of conventional spectroscopy and coherent control experiments, applied to the energy flow in the light-harvesting complex LH2 from bacterial photosynthesis. Closed-loop control experiments allowed the characteristic coupling frequency of internal conversion in the carotenoid in LH2 to be extracted. Open-loop three-pulse control experiments, on the other hand, could directly observe an anticipated Raman-excited carotenoid ground state. As a variant of difference spectroscopy, coherent control has thus served to gain complementary spectroscopic knowledge about the energy flow in carotenoids by comparing natural to manipulated dynamics. Finally, we propose future coherent control experiments on the electronic state structure of carotenoids and discuss prospects of coherent control for other biological chromophores.  相似文献   

7.
From theoretical considerations, three types of coherent excitations of biological systems have been suggested: (i) vibrations of membranes and of proteins with frequencies above 109 Hz; (ii) near static excitation of a highly polar metastable state; and (iii) low frequency periodic enzyme reactions. Recent experimental evidence is discussed.  相似文献   

8.
Photofragment yield spectra and NO(X(2)Pi(1/2,3/2); v = 1, 2, 3) product vibrational, rotational, and spin-orbit state distributions were measured following NO dimer excitation in the 4000-7400 cm(-1) region in a molecular beam. Photofragment yield spectra were obtained by monitoring NO(X(2)Pi; v = 1, 2, 3) dissociation products via resonance-enhanced multiphoton ionization. New bands that include the symmetric nu(1) and asymmetric nu(5) NO stretch modes were observed and assigned as 3nu(5), 2nu(1) + nu(5), nu(1) + 3nu(5), and 3nu(1) + nu(5). Dissociation occurs primarily via Deltav = -1 processes with vibrational energy confined preferentially to one of the two NO fragments. The vibrationally excited fragments are born with less rotational energy than predicted statistically, and fragments formed via Deltav = -2 processes have a higher rotational temperature than those produced via Deltav = -1 processes. The rotational excitation likely derives from the transformation of low-lying bending and torsional vibrational levels in the dimer into product rotational states. The NO spin-orbit state distribution reveals a slight preference for the ground (2)Pi(1/2) state, and in analogy with previous results, it is suggested that the predominant channel is X(2)Pi(1/2) + X(2)Pi(3/2). It is suggested that the long-range potential in the N-N coordinate is the locus of nonadiabatic transitions to electronic states correlating with excited product spin-orbit states. No evidence of direct excitation to electronic states whose vertical energies lie in the investigated energy region is obtained.  相似文献   

9.
The investigation of unimolecular reactions with small rate constants is difficult owing to competing processes (inelastic collisions and bimolecular reactions) and the diffusion of reactant and product molecules out of the detection volume. For this reason, a new experimental approach for the measurement of specific rate constants in a molecular beam experiment has been exploited; instead of monitoring the temporal change of intensity as in a cell experiment, we monitor the spatial change along the molecular beam axis after laser excitation. For a given particle velocity the flight path between excitation and detection region defines the reaction time. By varying the distance the specific rate constant can be determined directly both from the decrease in the number density of reactant molecules as well as from the increase in product molecules. As a model system, the laser-induced (λ = 193 nm) photodissociation of mesitylene (trimethylbenzene) is studied. Previous experiments on the specific rate constant of mesitylene at this excitation energy differ between each other by about a factor of ten. By combining the new results with measurements at higher excitation energies, rate constants over a range of two orders of magnitude are now available for this reaction. The differences between the various experimental results are discussed within the framework of a statistical theory.  相似文献   

10.
Ultrafast photoinduced dynamics of electronic excitation in molecular dimers is drastically affected by the dynamic reorganization of inter- and intra- molecular nuclear configuration modeled by a quantized nuclear degree of freedom. The dynamics of the electronic population and nuclear coherence is analyzed by solving the chain of coupled differential equations for population inversion, electron-vibrational correlation, etc. Intriguing results are obtained in the approximation of a small change of the nuclear equilibrium upon photoexcitation. In the limiting case of resonance between the electronic energy gap and the frequency of the nuclear mode these results are justified by comparison to the exactly solvable Jaynes-Cummings model. It is found that the photoinduced processes in the model dimer are arranged according to their time scales: (i) Fast scale of nuclear motion, (ii) intermediate scale of dynamical redistribution of electronic population between excited states as well as growth and dynamics of electron-nuclear correlation, (iii) slow scale of electronic population approach to the quasi-equilibrium distribution, decay of electron-nuclear correlation, and decrease of the amplitude of mean coordinate oscillation. The latter processes are accompanied by a noticeable growth of the nuclear coordinate dispersion associated with the overall nuclear wave packet width. The demonstrated quantum relaxation features of the photoinduced vibronic dynamics in molecular dimers are obtained by a simple method, applicable to systems with many degrees of freedom.  相似文献   

11.
We computationally examine various aspects of the reaction dynamics of the photodissociation and recombination of molecular iodine. We use our recently proposed formalism to calculate time-dependent x-ray scattering signal changes from first principles. Different aspects of the dynamics of this prototypical reaction are studied, such as coherent and noncoherent processes, features of structural relaxation that are periodic in time versus nonperiodic dissociative processes, as well as small electron density changes caused by electronic excitation, all with respect to x-ray scattering. We can demonstrate that wide-angle x-ray scattering offers a possibility to study the changes in electron densities in nonperiodic systems, which render it a suitable technique for the investigation of chemical reactions from a structural dynamics point of view.  相似文献   

12.
In the present work we outline the implications of a quantum-classical approach for modeling two-photon absorption of organic chromophores in solution. The approach joins many-photon absorption dynamic simulations with quantum chemical first principles calculations of corresponding excitation energies and transition matrix elements. Among a number of conclusions of the study, we highlight three: (i) The use of either short- or long-pulse excitation is demonstrated to switch the absorptive capacity of the nonlinear medium owing to enhancement of the nonlinear stepwise processes; (ii) The two-photon cross section strongly depends on the way in which the dephasing rate decays when the laser frequency is tuned off-resonant with the corresponding molecular transition; (iii) The results of the pulse propagation simulations based on electronic structure data obtained with a new Coulomb attenuated functional is shown to be in much better agreement with the experimental results than those based on data received with traditional density functionals.  相似文献   

13.
In the following paper we present translational anisotropy and angular momentum polarization data for O((3)P(1)) and O((3)P(2)) products of the photodissociation of molecular oxygen at 193 nm. The data were obtained using polarized laser photodissociation coupled with resonantly enhanced multiphoton ionization and velocity-map ion imaging. Under the jet-cooled conditions employed, absorption is believed to be dominated by excitation into the Herzberg continuum. The experimental data are compared with previous experiments and theoretical calculations at this and other wavelengths. Semi-classical calculations performed by Groenenboom and van Vroonhoven [J. Chem. Phys, 2002, 116, 1965] are used to estimate the alignment parameters arising from incoherent excitation and dissociation and these are shown to agree qualitatively well with the available experimental data. Following the work of Alexander et al. [J. Chem. Phys, 2003, 118, 10566], orientation and alignment parameters arising from coherent excitation and dissociation are modelled more approximately by estimating phase differences generated subsequent to dissociation via competing adiabatic pathways leading to the same asymptotic products. These calculations lend support to the view that large values of the coherent alignment moments, but small values of the corresponding orientation moments, could arise from coherent excitation of (and subsequent dissociation via) parallel and perpendicular components of the Herzberg I, II and III transitions.  相似文献   

14.
The photodissociation of O(2) in the region from 120-133 nm has been investigated using product imaging. The spectrum in this region is dominated by transitions from the ground state to the first three vibrational levels of the E (3)Sigma(u) (-) state. The O((1)D)+O((3)P) channel is the only product channel observed by product imaging for dissociation at either 124.4 nm or 120.4 nm. The O((1)D(2)) product is aligned in the molecular frame in such a way that its J vector is perpendicular to the relative velocity vector between the O((1)D) and the O((3)P). The variation in the anisotropy of dissociation is approximately predicted by considering transitions on individual lines and then taking into account the coherent excitation of overlapping resonances. At 132.7 nm, both the O((1)D)+O((3)P) and the O((3)P)+O((3)P) channels are observed with branching ratios of 0.40+/-0.08 and 0.60+/-0.09, respectively. At 130.2 nm, the quantum yield for production of O((1)D) is 0.76+/-0.28.  相似文献   

15.
Coherent Cs-Cu stretching vibration at a Cu(111) surface covered with a full monolayer of Cs is observed by using time-resolved second harmonic generation spectroscopy, and its generation mechanisms and dynamics are simulated theoretically. While the irradiation with ultrafast pulses at both 400 and 800 nm generate the coherent Cs-Cu stretching vibration at a frequency of 1.8 THz (60 cm(-1)), they lead to two distinctively different features: the initial phase and the pump fluence dependence of the initial amplitude of coherent oscillation. At 400 nm excitation, the coherent oscillation is nearly cosine-like with respect to the pump pulse and the initial amplitude increases linearly with pump fluence. In contrast, at 800 nm excitation, the coherent oscillation is sine-like and the amplitude is saturated at high fluence. These features are successfully simulated by assuming that the coherent vibration is generated by two different electronic transitions: substrate d-band excitation at 400 nm and the quasi-resonant excitation between adsorbate-localized bands at 800 nm, i.e., possibly from an alkali-induced quantum well state to an unoccupied state originating in Cs 5d bands or the third image potential state.  相似文献   

16.
Collision induced (CI) processes involving hydrogen atoms on a graphite surface are studied quantum mechanically within the rigid, flat surface approximation, using a time-dependent wave packet method. The Eley-Rideal (ER) reaction and collision induced desorption (CID) cross sections are obtained with the help of two propagations which use different sets of coordinates, a "product" and a "reagent" set. Several adsorbate-substrate initial states of the target H atom in the chemisorption well are considered, and CI processes are studied over a wide range of projectile energy. Results show that (i) the Eley-Rideal reaction is the major reactive outcome and (ii) CID cross sections do not exceed 4 A2 and present dynamic thresholds for low values of the target vibrational quantum number. ER cross sections show oscillations at high energies which cannot be reproduced by classical and quasiclassical trajectory calculations. They are related to the vibrational excitation of the reaction products, which is a rather steep decreasing function of the collision energy. This behavior causes a selective population of the low-lying vibrational states and allows the quantization of the product molecular states to manifest itself in a collisional observable. A peak structure in the CID cross section is also observed and is assigned to the selective population of metastable states of the transient molecular hydrogen.  相似文献   

17.
Femtosecond time-resolved coherent anti-Stokes Raman scattering (fs-CARS) gives access to ultrafast molecular dynamics. However, the gain of the temporal resolution entails a poor spectral resolution due to the inherent spectral width of the femtosecond excitation pulses. Modifications of the phase shape of one of the exciting pulses results in dramatic changes of the mode distribution reflected in coherent anti-Stokes Raman spectra. A feedback-controlled optimization of specific modes making use of phase and/or amplitude modulation of the pump laser pulse is applied to selectively influence the anti-Stokes signal spectrum. The optimization experiments are performed under electronically nonresonant and resonant conditions. The results are compared and the role of electronic resonances is analyzed. It can be clearly demonstrated that these resonances are of importance for a selective excitation by means of phase and amplitude modulation. The mode selective excitation under nonresonant conditions is determined mainly by the variation of the spectral phase of the laser pulse. Here, the modulation of the spectral amplitudes only has little influence on the mode ratios. In contrast to this, the phase as well as amplitude modulation contributes considerably to the control process under resonant conditions. A careful analysis of the experimental results reveals information about the mechanisms of the mode control, which partially involve molecular dynamics in the electronic states.  相似文献   

18.
Off-resonance excitation coupled with mass-selective axial ejection of ions in a linear ion trap is shown to allow coherent control of a trapped ion population. Oscillations of the detected ion current have been found to correspond to the degree of detuning of the excitation field from the resonance frequency. Under appropriate excitation conditions coherent oscillations at the excitation frequency are seen that evolve into the ions’ secular frequency on termination of the excitation field. Termination of the excitation field at various points during the off-resonance excitation profile leaves the ions with different degrees of radial excitation. The degree of radial excitation can be controlled by the coherent excitation field and is demonstrated to be useful for collision-induced dissociation.  相似文献   

19.
A general introduction to several coherent Raman methods, which are based on the third-order non-linear susceptibility is given. These methods are described basically under a common point of view, which is the excitation of coherent molecular vibrations in the field of two strong laser beams operating at different frequencies. Most of these methods can be applied successfully also under electronic resonance conditions. As a particular example, studies of coherent anti-Stokes continuum resonance Raman scattering in iodine vapour will be presented and discussed in detail.  相似文献   

20.
It is shown that upon excitation of a molecule by light from a thermal source, the incident field tends to act as a projection operator for a subspace spanned by eigenstates of the molecular hamiltonian. Furthermore, for chaotic light sources there is an effective upper limit, τ, for the time during which there is coherent excitation. If τ is much greater than the uncertainty minimum, as is normally the case, the reduced density operator for the excited states of the molecule becomes “filtered”, the extent of which determines the pattern of subsequent radiative and radiationless decay processes. The limitation of the “filtering” process to the interval τ provides a new distinction for large- and small-molecule behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号