首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photoelectron shake-up satellite spectra that accompany the C1s and O1s main lines of carbon monoxide have been studied by a combination of high-resolution x-ray photoelectron spectroscopy and accurate ab initio calculations. The symmetry-adapted cluster-expansion configuration-interaction general-R method satisfactorily reproduces the satellite spectra over a wide energy region, and the quantitative assignments are proposed for the 16 and 12 satellite bands for C1s and O1s spectra, respectively. Satellite peaks above the pi(-1)pi(*) transitions are mainly assigned to the Rydberg excitations accompanying the inner-shell ionization. Many shake-up states, which interact strongly with three-electron processes such as pi(-2)pi(*2) and n(-2)pi(*2), are calculated in the low-energy region, while the continuous Rydberg excitations are obtained with small intensities in the higher-energy region. The vibrational structures of low-lying shake-up states have been examined for both C1s and O1s ionizations. The vibrational structures appear in the low-lying C1s satellite states, and the symmetry-dependent angular distributions for the satellite emission have enabled the Sigma and Pi symmetries to be resolved. On the other hand, the potential curves of the low-lying O1s shake-up states are predicted to be weakly bound or repulsive.  相似文献   

2.
Configuration interaction (CI) studies of the ground, electronically excited singlet and triplet states and of the ionized states (cations) are reported for p- quinodimethane (p-xylylene). The calculated ionization potentials are compared with the experimental photoelectron spectrum for the low-energy ionization region. The two high-energy low-intensity flanks of the second and third band observed in the photoelectron spectrum are assigned to be due to the two non-Koopmans' cation states, ascribing to shake-up ionizations.The calculated singlet-singlet and singlet-triplet excitation energies are compared with previous semiempirical MO results and experimental data.  相似文献   

3.
《Chemical physics》1987,117(1):51-63
VUV (6.2–9 eV) and electron scattering spectra (1–9 eV) have been recorded for 2-methylpropene (isobutene). Also, electronic states of the molecule, including the ground state and cationic states, have been investigated using ab initio multi-reference configuration interaction calculations. Some Koopmans-type in the UV photoelectron spectrum are reassigned and a number of shake-up states computed. In the electronic spectrum, Rydberg excited have been assigned and a second valence excited state (σ π*) located within about 1 eV of the V(ππ*) state. The experiments show, and theory confirms, that the Rydberg R(π3s) state has a positive electron affinity. Some interesting correlations between ionisation energies, energies of shake-up state electronic excitation energies are identified.  相似文献   

4.
Structures consisting of several peaks were clearly observed in the loss band regions of core electron peaks in the X-ray photoelectron spectra of KF, NaF and LiF. It is shown that, although these structures very much resemble the electron energy loss spectra of the salts obtained using an externally produced electron beam, the energies and intensities of some peaks are dependent upon the ionizing core levels. One peak definitely attributable to an intrinsic satellite was found in the loss band region of F 1s spectrum of each salt, which was concluded to be due to the shake-up process associated with F 2p → F 3p excitation.  相似文献   

5.
The energy flow and fragmentation dynamics of N,N-dimethylisopropylamine (DMIPA) upon excitation to the 3p Rydberg states has been investigated with use of time-resolved photoelectron and mass spectrometry. The 3p states are short-lived, with a lifetime of 701 +/- 45 fs. From the time dependence of the photoelectron spectra, we infer that the primary reaction channel leads to the 3s level, which itself decays to the ground state with a decay time of 87.9 +/- 10.2 ps. The mass spectrum reveals fragmentation with cleavage at the alpha C-C bond, indicating that the energy deposited in vibrations during the internal conversion from 3p to 3s exceeds the bond energy. A thorough examination of the binding energies and temporal dynamics of the Rydberg states, as well as a comparison to the related fragmentation of N,N-dimethyl-2-butanamine (DM2BA), suggests that the fragments are formed on the ion surfaces, i.e., after ionization and on a time scale much slower than the fluorescence decay from 3s to the ground state.  相似文献   

6.
Molecular core ionization spectra and their satellites were studied by the symmetry adapted cluster-configuration interaction (SAC-CI) general-R method. The core-electron binding energies of C, N, O, and F atoms of 22 molecules were calculated with an average deviation of 0.11 eV from the experimental values. The energy splittings between K-shell gerade and ungerade states were calculated and discussed in relation to the bond length. The satellite spectra of the C 1s and N 1s core ionizations of methane and ammonia were investigated. The SAC-CI general-R method gave many shake-up states with moderate intensities, reproducing the general feature of the experimental spectra, and thus enabling the detailed understanding and assignments of the core-electron ionization spectra.  相似文献   

7.
《Chemical physics letters》1987,141(5):414-416
The N1s and O1s regions of gaseous N,N-dimethyl-p-nitroaniline have been studied by X-ray photoelectron spectroscopy. The N1s (-NO2) peak is ≈0.5 eV broader than the N1s (-NH2) peak, indicating the presence of intense, unresolved shake-up. A shake-up peak has been observed in the O1s region at 2.1 eV higher binding energy than the main peak, with a relative intensity of 50%. The results have been compared with the corresponding features in the paranitroaniline and in the solid, and it has been found that the O1s shake-up intensity remains essentially unchanged while the N1s shake-up is enhanced in going to the solid. Comparison has also been made with a CNDO/S CI calculation which somewhat underestimates the relative intensities but is in good overall agreement with experiment.  相似文献   

8.
Laser photoelectron spectra have been obtained following the preparation of eight vibrational states in S(1) toluene. For four of the vibrational states (up to approximately 550 cm(-1) excess energy) excitation and ionization with nanosecond laser pulses give rise to photoelectron spectra with well-resolved vibrational peaks. For the other states (>750 cm(-1) excess energy) the photoelectron spectra show a loss of structure when nanosecond pulses are used, as a result of intramolecular dynamics [see Whiteside et al., J. Chem. Phys. 123, 204317 (2005), following paper]. A number of vibrational peaks in the photoelectron spectra are assigned, and we find that the common series of ion vibrational peaks observed following the ionization of p-fluorotoluene in various S(1) vibrational states is not reproduced in toluene.  相似文献   

9.
The excitation and ionization spectra of RuO4 and OsO4 are studied theoretically by the symmetry-adapted cluster (SAC ) and SAC-CI theories. This is the attempt to assign whole of the spectra by ab initio calculations including electron correlations. In the ground state, electron correlations work to reduce the polarity of the M–O bond overestimated in the Hartree–Fock calculation. The Os–O bond is stronger than is the Ru–O bond, which is reflected in the differences of the excitation and ionization spectra of RuO4 and OsO4. The excitation energies of the experimental spectra are well reproduced by the SAC-CI theory, though the calculated intensities of some peaks are very small in comparison with the experiments. The outer-valence ionization spectra calculated by the SAC-CI theory agree well with the experimental photoelectron spectra. Some shake-up peaks that are accompanied with an electron-transfers from oxygen to metal are also calculated.  相似文献   

10.
用离子速度成像方法, 研究了长链C8H17Br分子在234 nm激光下的光解过程. 通过2+1共振增强多光子电离探测了两种光解产物Br*(2P1/2)和Br(2P3/2), 得到了它们的相对量子产率. 从光解产物Br*(2P1/2)和Br(2P3/2)的速度图像得到了能量和角度分布. 并根据相对量子产率和角度分布, 计算了不同解离通道的比例. 实验发现C8H17Br分子解离过程中大部分能量都转化为内能, 该能量分配可以较好地用软反冲模型来解释, 并分析了这种能量分配跟烷基大小的关系.  相似文献   

11.
We have measured the vibrational structures of the N 1s photoelectron mainline and satellites of the gaseous N2 molecule with the resolution better than 75 meV. The gerade and ungerade symmetries of the core-ionized (mainline) states are resolved energetically, and symmetry-dependent angular distributions for the satellite emission allow us to resolve the Sigma and Pi symmetries of the shake-up (satellite) states. Symmetry-adapted cluster-expansion configuration-interaction calculations of the potential energy curves for the mainline and satellite states along with a Franck-Condon analysis well reproduce the observed vibrational excitation of the bands, illustrating that the theoretical calculations well predict the symmetry-dependent geometry relaxation effects. The energies of both mainline states and satellite states, as well as the splitting between the mainline gerade and ungerade states, are also well reproduced by the calculation: the splitting between the satellite gerade and ungerade states is calculated to be smaller than the experimental detection limit.  相似文献   

12.
We report on the results of an exhaustive study of the interplay between the valence electronic structure, the topology and reactivity of orbitals, and the molecular structure of biphenyl by means of Penning ionization electron spectroscopy in the gas phase upon collision with metastable He*(2(3)S) atoms. The measurements are compared with one-particle Green's function calculations of one-electron and shake-up valence ionization spectra employing the third-order algebraic diagrammatic construction scheme [ADC(3)]. Penning ionization intensities are also analyzed by means of the exterior electron-density model and comparison with photoelectron spectra: in contrast with the lines originating from sigma orbitals, ionization lines belonging to the pi-band system have large Penning ionization cross sections due to their greater extent outside the molecular van der Waals surface. The involved chemi-ionization processes are further experimentally investigated using collision-energy-resolved Penning ionization electron spectroscopy. The cross sections of pi-ionization bands exhibit a markedly negative collision-energy dependence and indicate that the interaction potential that prevails between the molecule and the He*(2(3)S) atom is strongly attractive in the pi-orbital region. On the other hand, the partial ionization cross sections pertaining to sigma-ionization channels are characterized by more limited collision-energy dependencies, as a consequence of rather repulsive interactions within the sigma-orbital region. A comparison of ADC(3) simulations with the Penning ionization electron spectra and UV photoelectron spectra measured by Kubota et al. [Chem. Phys. Lett. 1980, 74, 409] on thin films of biphenyl deposited at 170 and 109 K on copper demonstrates that biphenyl molecules lying at the surface of polycrystalline layers adopt predominantly a planar configuration, whereas within an amorphous sample most molecules have twisted structures similar to those prevailing in the gas phase.  相似文献   

13.
A complete study of the valence electronic structure and related electronic excitation properties of cyclopentene in its C(s) ground state geometry is presented. Ionization spectra obtained from this compound by means of photoelectron spectroscopy (He I and He II) and electron momentum spectroscopy have been analyzed in details up to electron binding energies of 30 eV using one-particle Green's function (1p-GF) theory along with the outer-valence (OVGF) and the third-order algebraic diagrammatic construction [ADC(3)] schemes. The employed geometries derive from DFT/B3LYP calculations in conjunction with the aug-cc-pVTZ basis set, and closely approach the structures inferred from experiments employing microwave spectroscopy or electron diffraction in the gas phase. The 1p-GF/ADC(3) calculations indicate that the orbital picture of ionization breaks down at electron binding energies larger than approximately 17 eV in the inner-valence region, and that the outer-valence 7a' orbital is also subject to a significant dispersion of the ionization intensity over shake-up states. This study confirms further the rule that OVGF pole strengths smaller than 0.85 foretell a breakdown of the orbital picture of ionization at the ADC(3) level. Spherically averaged (e, 2e) electron momentum distributions at an electron impact energy of 1200 eV that were experimentally inferred from an angular analysis of EMS intensities have been interpreted by comparison with accurate simulations employing ADC(3) Dyson orbitals. Very significant discrepancies were observed with momentum distributions obtained from several outer-valence ionization bands using standard Kohn-Sham orbitals.  相似文献   

14.
《Chemical physics letters》1987,137(5):425-430
We report photoelectron spectra of the outer and, in particular, the inner valence electron region of gaseous NO for several photon energies between 45 and 110 eV. The spectra are measured at the quasi magic angle, so that the electron distribution curves represent the variation of the cross section independent of the β parameter. We find 16 bands in the inner valence region which can be tentatively correlated to various shake-up excitations. On the basis of published theoretical work, a comparison is made with spectra taken with soft X-ray excitation.  相似文献   

15.
本文报道四苯(基)苯基聚硅烷、乙烯基聚硅烷以及它们的共聚物的X-射线光电子能谱(XPS)研究。由反映在C_(1s)和Si_(2p)的振起伴峰表征了分子中(P-P)_x、(P-d)_x和(d-d)_x键的存在,同时也探讨了它们各自的XPS价带谱特征。  相似文献   

16.
The velocity-map imaging technique was used to record photoelectron and photofragment ion images of HCl following two-photon excitation of the E Sigma(+)(0+), V 1Sigma(+)(0+) (nu=9,10,11) states and subsequent ionization. The images allowed us to determine the branching ratios between autoionization and dissociation channels for the different intermediate states. These branching ratios can be explained on the basis of intermediate state electron configurations, since the configuration largely prohibits direct ionization in a one-electron process, and competition between autoionization and dissociation into H* (n=2)+Cl and H+Cl*(4s,4p,3d) is observed. From a fit to the vibrationally resolved photoelectron spectrum of HCl+ it is apparent that a single superexcited state acts as a gateway to autoionization and dissociation into H+Cl*(4s). Potential reconstruction of the superexcited state to autoionization was undertaken and from a comparison of different autoionization models it appears most likely that the gateway state is a purely repulsive and low-n Rydberg state with a (4Pi) ion core.  相似文献   

17.
The application of the charge-transfer concept on core electron ionization in donor–acceptor molecules is analyzed. A single excitation picture, involving the highest occupied and lowest unoccupied molecular orbitals is compared with a full π-valence orbital active space model. The connections between the notion of charge transfer in donor–acceptor species with the shake-up picture used for core photoelectron spectra of small molecules and with the dynamical screening concept applied on surface–adsorbate spectra are discussed.  相似文献   

18.
The VUV absorption spectrum of fenchone is re-examined using synchrotron radiation Fourier transform spectrometry, revealing new vibrational structure. Picosecond laser (2+1) resonance enhanced multiphoton ionization (REMPI) spectroscopy complements this, providing an alternative view of the 3spd Rydberg excitation region. These spectra display broadly similar appearance, with minor differences that are largely explained by referring to calculated one- and two-photon electronic excitation cross-sections. Both show good agreement with Franck-Condon simulations of the relevant vibrational structures. Parent ion REMPI ionization yields with both femtosecond and picosecond excitation laser pulses are studied as a function of laser polarization and intensity, the latter providing insight into the relative two-photon excitation and one-photon ionization rates. The experimental circular-linear dichroism observed in the parent ion yields varies strongly between the 3s and 3p Rydberg states, in good overall agreement with the calculated two-photon excitation circular-linear dichroism, while corroborating other evidence that the 3pz sub-state plays no more than a very minor role in the (2+1) REMPI spectrum. Vibrationally resolved photoelectron spectra are recorded with picosecond pulse duration (2+1) REMPI at selected intermediate vibrational excitations. The 3s intermediate state displays a very strong Δv=0 propensity on ionization, but the 3p intermediate evidences more complex vibronic dynamics, and we infer some 3p→3s internal conversion prior to ionization.  相似文献   

19.
Fluorescence excitation spectra produced through photoexcitation of N(2) using synchrotron radiation in the spectral region between 50 and 62.5 nm have been obtained with a resolution of 0.004?nm. A broadband detector (in the 115-180 nm region) was employed to monitor fluorescence originated from neutral excited atomic nitrogen fragments which are produced through direct dissociation processes and predissociation from the well-known many-electron excited Rydberg states. We have identified a new Rydberg series (2 (2)Π(g)) 4sσ, a better resolved Rydberg (D (2)Π(g)) npσ series, and also the prominent Codling series converging to the D (2)Π(g), and C (2)Σ(u) (+) states of N(2) (+), respectively. By normalizing our relative fluorescence intensities to previously measured absolute fluorescence cross-section data we obtain the cross-section data of undispersed fluorescence in the 115-180?nm region. The fluorescence quantum yields for the present photodissociative excitation processes are found to be less than 0.05. The present results may provide important data for our understanding of competitions among the various decay channels of the many-electron transition states of N(2).  相似文献   

20.
Theoretical fine spectroscopy has been performed for the valence ionization spectra of furan, pyrrole, and thiophene with the symmetry-adapted-cluster configuration-interaction general-R method. The present method described that the pi(1) state interacts with the pi(3) (-2)pi*, pi(2) (-2)pi*, and pi(2) (-1)pi(3) (-1)pi* shake-up states providing the split peaks and the outer-valence satellites, both of which are in agreement with the experiments. The intensity distributions were analyzed in detail for the inner-valence region. In particular, for furan, theoretical intensities were successfully compared with the intensity measured by the electron momentum spectroscopy. The interactions of the 3b(2) and 5a(1) states with the shake-up states were remarkable for furan and pyrrole, while the 4b(2) state of thiophene had relatively large intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号