首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using first-principle methods, we characterized Ar(m)BeO(q+) (0 ≤ m ≤ 3 and 0 ≤ q ≤ 2) and BeO(q+) (3 ≤ q ≤ 5) multicharged ions (MCIs). This includes their structural parameters, relative stabilities and vibrational wavenumbers. Our calculations confirm the existence of the ArBeO complex. In addition, we found (meta-)stable neutral and ionic complexes such as ArBeO(+), ArBeO(2+), Ar(2)BeO, Ar(2)BeO(+), Ar(2)BeO(2+), Ar(3)BeO, Ar(3)BeO(+) and Ar(3)BeO(2+). The analysis of the structural parameters and of the electron density differences shows that a strong perturbation in the electronic structure of the BeO(q+) (q = 1,2) moiety occurs upon complexation, resulting in a major increase in covalency of these multicharged ions (MCIs). The consequences of solvation of MCIs in argon matrices are pointed out. More generally, the effects on the spectroscopy of MCIs trapped on cold matrices are discussed.  相似文献   

2.
This study collects information from absorption and luminescence excitation spectra recorded for Mn atoms isolated in the solid rare gases Ar, Kr, and Xe and presents an analysis of the site occupancy, based on the polarizabilities of the rare gases and the observed spectral shifts. Two thermally stable sites of isolation exist for atomic Mn in solid Ar and Kr, while a single thermally stable site is present in Mn/Xe. Site occupancy assignments are based on the application of a polarizability model to the z (6)P(5/2)<--a (6)S(5/2); z (8)P(5/2)<--a (6)S(5/2), and y (6)P(5/2)<--a (6)S(5/2) electronic transitions of atomic Mn. From an analysis of the observed RG matrix-to-gas phase energy shifts for P<--S type transitions, this model allows the association of certain site types occupied by metal atoms in the rare gas solids. The required condition being a linear dependence of the matrix shifts with rare gas polarizability for those metal atoms "trapped" in a particular site type. Application of the polarizability model in conjunction with trends observed in site dominance, established a connection between the blue sites in Ar and Kr and the single site in Xe. Use of the known MgRG ground state bond lengths facilitated an identification of the sites of Mn atom isolation assuming the transference of the known MgRG bond lengths to the MnRG systems. Substitutional site occupancy of atomic Mn is assigned to the blue sites in Ar and Kr and the single site in Xe, while tetra-vacancy site occupancy is assigned to the red sites in Ar and Kr. Consistent with these assignments, Mn atoms in solid Ar show a preference for trapping in tetra-vacancy sites whereas in solid Kr, single substitutional sites are preferred and in Xe, this is the only site observed.  相似文献   

3.
The vibrational spectra of Ag(3) and Ag(4) are recorded in the far-infrared between 100 and 220 cm(-1) using multiple photon dissociation spectroscopy of their complexes with Ar atoms. For Ag(3)-Ar two IR active bands are found at 113 and 183 cm(-1), for Ag(4)-Ar one band at 163 cm(-1) and very weak IR activity at 193 cm(-1) are observed. This, together with recent theoretical studies, allows for a reassignment of the controversial vibrational data reported earlier for the bare Ag(3) cluster. The influence of the number of Ar atoms in the complexes on the frequency of the IR active modes is found to be minor. However, the low-frequency IR-active band of Ag(3) shifts with increasing Ar coverage from 113 cm(-1) for Ag(3)-Ar to about 120 cm(-1) for Ag(3)-Ar(4), the value known for Ag(3) embedded in rare gas matrices.  相似文献   

4.
Ar-NiCO and Ne-NiCO have been predicted as novel neutral noble gas charge-transfer complexes, with binding energies of 7.70 and 2.16 kcal/mol, respectively, by the highly correlated coupled-cluster singles and doubles including a perturbational estimate of triple excitations calculations. The calculated shifts in the Ni-C-O bending frequency are 48 and 36 cm(-1) for Ar-NiCO and Ne-NiCO, while the corresponding experimental matrix shifts are 46 and 36 cm(-1), respectively. The anharmonicity effects for these frequencies are verified to be very small. The interaction between a noble gas atom and NiCO is discussed through natural population analyses and the electron density difference map. We further examined the noble gas matrix effects on the geometrical structure and vibrational frequencies of NiCO by performing density functional theory calculations for the Ng31-NiCO (Ng = Ar, Ne, He) system. The present results will inspire the further experimental investigation on the complexes of noble gas and transition metal compounds generated in the matrix isolation experiments.  相似文献   

5.
A detailed analysis of the origins of vibrational frequency shifts of diatomic molecules (I2 and ICl) in a rare gas (Xe) liquid is presented. Specifically, vibrationally adiabatic mixed quantum-classical molecular dynamics simulations are used to obtain the instantaneous frequency shifts and correlate the shifts to solvent configurations. With this approach, important mechanistic questions are addressed, including the following: How many solvent atoms determine the frequency shift? What solvent atom configurations lead to blue shifts, and which lead to red shifts? What is the effect of solute asymmetry? The mechanistic analysis can be generally applied and should be useful in understanding what information is provided by infrared and Raman spectra about the environment of the probed vibrational mode.  相似文献   

6.
The combination of matrix isolation infrared spectroscopic and quantum chemical calculation results provide strong evidence that scandium and yttrium monoxide cations, ScO+ and YO+, coordinate multiple noble gas atoms in forming noble gas complexes. The results showed that ScO+ coordinates five Ar, Kr, or Xe atoms, and YO+ coordinates six Ar or Kr and five Xe atoms in solid noble gas matrixes. Hence, the ScO+ and YO+ cations trapped in solid noble gas matrixes should be regarded as the [ScO(Ng)5]+ (Ng = Ar, Kr, or Xe), [YO(Ng)6]+ (Ng = Ar or Kr) or [YO(Xe)5]+ complexes. Experiments with dilute krypton or xenon in argon or krypton in xenon produced new IR bands, which are due to the stepwise formation of the [ScO(Ar)(5-n)(Kr)n]+, [ScO(Kr)(5-n)(Xe)n]+ (n = 1-5), [YO(Ar)(6-n)(Kr)n]+ (n = 1-6), and [YO(Ar)(6-n)(Xe)n]+ (n = 1-4) complexes.  相似文献   

7.
Nonadiabatic transitions induced by collisions with He, Ar, Kr, and Xe atoms in the I(2) molecule excited to the f0(g)(+) second-tier ion-pair state are investigated by means of the optical-optical double resonance spectroscopy. Fluorescence spectra reveal that the transition to the F0(u)(+) state is a dominant nonradiative decay channel for f state in He, Ar, and Kr, whereas the reactive quenching is more efficient for collisions with Xe atom. Total rate constants and vibrational product state distributions for the f-->F electronic energy transfer are determined and analyzed in terms of energy gaps and Franck-Condon factors for the combining vibronic levels at initial vibrational excitations v(f)=8, 10, 14, and 17. Quantum scattering calculations are performed for collisions with He and Ar atoms, implementing a combination of the diatomics-in-molecule and long-range perturbation theories to evaluate diabatic PESs and coupling matrix elements. Calculated rate constants and vibrational product state distributions agree well with the measured ones, especially in case of Ar. Qualitative comparison is made with the previous results for the second-tier f0(g)(+)-->F0(u)(+) transition in collisions with I(2)(X) molecule and the first-tier E0(g)(+)-->D0(u)(+) transition induced by collisions with the rare gas atoms.  相似文献   

8.
A computational and experimental matrix isolation study of insertion of noble gas atoms into cyanoacetylene (HCCCN) is presented. Twelve novel noble gas insertion compounds are found to be kinetically stable at the MP2 level of theory, including four molecules with argon. The first group of the computationally studied molecules belongs to noble gas hydrides (HNgCCCN and HNgCCNC), and we found their stability for Ng = Ar, Kr, and Xe. The HNgCCCN compounds with Kr and Xe have similar stability to that of previously reported HKrCN and HXeCN. The HArCCCN molecule seems to have a weaker H-Ar bond than in the previously identified HArF molecule. The HNgCCNC molecules are less stable than the HNgCCCN isomers for all noble gas atoms. The second group of the computational insertion compounds, HCCNgCN and HCCNgNC, are of a different type, and they also are kinetically stable for Ng = Ar, Kr, and Xe. Our photolysis and annealing experiments with low-temperature cyanoacetylene/Ng (Ng = Ar, Kr, and Xe) matrixes evidence the formation of two noble gas hydrides for Ng = Kr and Xe, with the strongest IR absorption bands at 1492.1 and 1624.5 cm(-1), and two additional absorption modes for each species are found. The computational spectra of HKrCCCN and HXeCCCN fit most closely the experimental data, which is the basis for our assignment. The obtained species absorb at quite similar frequencies as the known HKrCN and HXeCN molecules, which is in agreement with the theoretical predictions. No strong candidates for an Ar compound are observed in the IR absorption spectra. As an important side product of this work, the data obtained in long-term decay of KrHKr+ cations suggest a tentative assignment for the CCCN radical.  相似文献   

9.
Photodissociation of formyl fluoride (HCOF) is studied in Ar, Kr, and Xe matrixes at 248 and 193 nm excitation by following spectral changes in the infrared absorption spectra. In all matrixes, the main photodissociation products are CO/HF species, including CO-HF and OC-HF complexes and thermally unstable CO/HF species (a distorted CO/HF complex or a reaction intermediate), which indicate negligible cage exit of atoms produced via the C-F and C-H bond cleavage channels. However, the observation of traces of H, F, CO, CO(2), F(2)CO, FCO, and HRg(2)(+) (Rg = Kr or Xe) in Kr and Xe matrixes would imply some importance of other reaction channels too. The analysis of the decay curves of the precursor shows that dissociation efficiency of HCOF increases as Ar < Kr < Xe, the difference being the factor of 10 between Ar and Xe. Moreover, HCOF dissociates 20-50 times faster at 193 nm compared to 248 nm. Interestingly, whereas the CO/HF species are stable with respect to photolysis in Ar, they photobleach in Kr and Xe matrixes at 248 and 193 nm, even though the first excited states of CO and HF are not energetically accessible with 193 and 248 nm photons. In krypton matrix, the photodissociation of CO/HF species at 248 nm is observed to be a single photon process. Quantum chemical calculations of electronic excitation energies of CO-HF and OC-HF complexes show that the electronic states of HF and CO mostly retain their diatomic nature in the pair. This clearly demonstrates that photodissociation of CO/HF complexes is promoted by the surrounding rare gas lattice.  相似文献   

10.
Fluorescence excitation spectra and wavelength-resolved emission spectra of the C(3)-Kr and C(3)-Xe van der Waals (vdW) complexes have been recorded near the 2(2-)(0), 2(2+)(0), 2(4-)(0), and 1(1)(0) bands of the A?(1)Π(u)-X?(1)Σ(g)(+) system of the C(3) molecule. In the excitation spectra, the spectral features of the two complexes are red-shifted relative to those of free C(3) by 21.9-38.2 and 34.3-36.1 cm(-1), respectively. The emission spectra from the A? state of the Kr complex consist of progressions in the two C(3)-bending vibrations (ν(2), ν(4)), the vdW stretching (ν(3)), and bending vibrations (ν(6)), suggesting that the equilibrium geometry in the X? state is nonlinear. As in the Ar complex [Zhang et al., J. Chem. Phys. 120, 3189 (2004)], the C(3)-bending vibrational levels of the Kr complex shift progressively to lower energy with respect to those of free C(3) as the bending quantum number increases. Their vibrational structures could be modeled as perturbed harmonic oscillators, with the dipole-induced dipole terms of the Ar and Kr complexes scaled roughly by the polarizabilities of the Ar and Kr atoms. Emission spectra of the Xe complex, excited near the A?, 2(2-) level of free C(3), consist only of progressions in even quanta of the C(3)-bending and vdW modes, implying that the geometry in the higher vibrational levels (υ(bend) ≥ 4, E(vib) ≥ 328 cm(-1)) of the X? state is (vibrationally averaged) linear. In this structure the Xe atom bonds to one of the terminal carbons nearly along the inertial a-axis of bent C(3). Our ab initio calculations of the Xe complex at the level of CCSD(T)∕aug-cc-pVTZ (C) and aug-cc-pVTZ-PP (Xe) predict that its equilibrium geometry is T-shaped (as in the Ar and Kr complexes), and also support the assignment of a stable linear isomer when the amplitude of the C(3) bending vibration is large (υ(4) ≥ 4).  相似文献   

11.
We investigate the formation mechanism of HXeCCXeH in a Xe matrix. Our experimental results show that the HXeCCXeH molecules are formed in the secondary reactions involving HXeCC radicals. The experimental data on the formation of HXeCCXeH is fully explained based on the model involving the HXeCC+Xe+H-->HXeCCXeH reaction. This reaction is the first case when a noble-gas hydride molecule is formed from another noble-gas molecule. In addition, we investigate the (12)C/(13)C isotope effect on the vibrational properties of organo-noble-gas hydrides (HKrCCH, HXeCCH, HXeCC, and HXeCCXeH) in noble-gas matrixes. The present experimental results and ab initio calculations on carbon isotope shifts of the vibrational modes support the previous assignments of these molecules. Upon (12)C to (13)C isotope substitution, we observed a pronounced effect on the H-Kr stretching mode of HKrCCH (downshift of 1.0-3.6 cm(-1), depending on the matrix site) and a small anomalous shift (+0.1 cm(-1)) of the H-Xe stretching mode of HXeCCH and HXeCCXeH.  相似文献   

12.
We have observed infrared spectra of the SO2 clusters in rare gas matrices (Ar, Kr, Xe). The spectral dependence on temperature and concentration led us to the firm assignment of the SO2 dimer in Kr and Xe, the result of which was used to reassign dimeric vibrational transitions in Ar that have been controversial for more than ten years.  相似文献   

13.
HXeCCH molecule is prepared in Ar and Kr matrices and characterized by IR absorption spectroscopy. The experiments show that HXeCCH can be made in another host than the polarizable Xe environment. The H-Xe stretching absorption of HXeCCH in Ar and Kr is blueshifted from the value measured in solid Xe. The maximum blueshifts are +44.9 and +32.3 cm(-1) in Ar and Kr, respectively, indicating stabilization of the H-Xe bond. HXeCCH has a doublet H-Xe stretching absorption measured in Xe, Kr, and Ar matrices with a splitting of 5.7, 13, and 14 cm(-1), respectively. Ab initio calculations for the 1:1 HXeCCHcdots, three dots, centeredNg complexes (Ng = Ar, Kr, or Xe) are used to analyze the interaction of the hosts with the embedded molecule. These calculations support the matrix-site model where the band splitting observed experimentally is caused by specific interactions of the HXeCCH molecule with noble-gas atoms in certain local morphologies. However, the 1:1 complexation is unable to explain the observed blueshifts of the H-Xe stretching band in Ar and Kr matrices compared to a Xe matrix. More sophisticated computational approach is needed to account in detail the effects of solid environment.  相似文献   

14.
We present theoretical and experimental evidence for CO(2) adsorption on different sites of single walled carbon nanotube (SWNT) bundles. We use local density approximation density functional theory (LDA-DFT) calculations to compute the adsorption energies and vibrational frequencies for CO(2) adsorbed on SWNT bundles. The LDA-DFT calculations give a range of shifts for the asymmetric stretching mode from about -6 to -20 cm(-1) for internally bound CO(2), and a range from -4 to -16 cm(-1) for externally bound CO(2) at low densities. The magnitude of the shift is larger for CO(2) adsorbed parallel to the SWNT surface; various perpendicular configurations yield much smaller theoretical shifts. The asymmetric stretching mode for CO(2) adsorbed in groove sites and interstitial sites exhibits calculated shifts of -22.2 and -23.8 cm(-1), respectively. The calculations show that vibrational mode softening is due to three effects: (1) dynamic image charges in the nanotube; (2) the confining effect of the adsorption potential; (3) dynamic dipole coupling with other adsorbate molecules. Infrared measurements indicate that two families of CO(2) adsorption sites are present. One family, exhibiting a shift of about -20 cm(-1) is assigned to internally bound CO(2) molecules in a parallel configuration. This type of CO(2) is readily displaced by Xe, a test for densely populated adsorbed species, which are expected to be present on the highest adsorption energy sites in the interior of the nanotubes. The second family exhibits a shift of about -7 cm(-1) and the site location and configuration for these species is ambiguous, based on comparison with the theoretical shifts. The population of the internally bound CO(2) may be enhanced by established etching procedures that open the entry ports for adsorption, namely, ozone oxidation followed by annealing in vacuum at 873 K. Xenon displacement experiments indicate that internally bound CO(2) is preferentially displaced relative to the -7 cm(-1) shifted species. The -7 cm(-1) shifted species is assigned to CO(2) adsorbed on the external surface based on results from etching and Xe displacement experiments.  相似文献   

15.
The semiclassical S-matrix theory including all orders of the interaction recently proposed by Smith et al. for spectral line broadening in linear molecules perturbed by atoms is applied to the shifts after inclusion of vibrational dephasing effects. Although this theory does not take into account the non-commutative character of the interaction at different times, a good consistency between experimental data and the present calculation is obtained for HClAr and HClXe at room and low temperatures and for the 0-0, 0-1 and 0-2 vibrational bands. It is shown why the non-commutation of the interaction, which is of major importance for the diatomic-diatomic molecule case, may be reasonably reasonably disregarded for the diatom-atom case.  相似文献   

16.
The matrix isolation infrared spectroscopic and quantum chemical calculation results indicate that vanadium oxides, VO2 and VO4, coordinate noble gas atoms in forming noble gas complexes. The results showed that VO2 coordinates two Ar or Xe atoms and that VO4 coordinates one Ar or Xe atom in solid noble gas matrixes. Hence, the VO2 and VO4 molecules trapped in solid noble gas matrixes should be regarded as the VO2(Ng)2 and VO4(Ng) (Ng = Ar or Xe) complexes. The total V-Ng binding energies were predicted to be 12.8, 18.2, 5.0, and 7.3 kcal/mol, respectively, for the VO2(Ar)2, VO2(Xe)2, VO4(Ar), and VO4(Xe) complexes at the CCSD(T)//B3LYP level of theory.  相似文献   

17.
We investigate the conditions when noble-gas hydrides can be found in real environments and report on the preparation and identification of the HXeBr···CO(2) complex in a xenon matrix and HXeBr in a carbon dioxide matrix. The H-Xe stretching mode of the HXeBr···CO(2) complex in a xenon matrix is observed at 1557 cm(-1), showing a spectral shift of +53 cm(-1) from the HXeBr monomer. The calculations at the CCSD(T)/aug-cc-pVTZ-PP(Xe,Br) level of theory give two stable structures for the HXeBr···CO(2) complex with frequency shifts of +55 and +103 cm(-1), respectively. On the basis of the calculations, the experimentally observed band is assigned to the more stable structure with a "parallel" geometry. The HXeBr molecule was prepared in a carbon dioxide matrix and has the H-Xe stretching frequency of 1646 cm(-1), meaning a strong matrix shift and stabilization of the H-Xe bond. The deuterated species DXeBr in a carbon dioxide matrix absorbs at 1200 cm(-1). This is the first case where a noble-gas hydride is prepared in a molecular solid. The thermal stabilities of HXeBr and HXeBr···CO(2) complex in a xenon matrix and HXeBr in a carbon dioxide matrix were examined. We have found a high thermal stability of HXeBr in carbon dioxide ice (at least up to 100 K), i.e., under conditions that may occur in nature.  相似文献   

18.
Electronic spectroscopy of the C(2) molecule is investigated in Ar, Kr, and Xe matrixes in the 150-500 nm range. In the Ar matrix, the D ((1)Sigma(u)(+)) <-- ((1)Sigma(g)(+)) Mulliken band near 240 nm is the sole absorption in the UV range, whereas in the Kr matrix additional bands in the 188-209 nm range are assigned to the Kr(n)()(+)C(2)(-) <-- Kr(n)()C(2) charge-transfer absorptions. Because of the formation of a bound C(2)Xe species, the spectral observations in the Xe matrix differ dramatically from the lighter rare gases: the Mulliken band is absent and new bands appear near 300 and 423 nm. The latter is assigned to the forbidden B'((1)Sigma(g)(+)) <-- X ((1)Sigma(g)(+)) transition, but the origin of the former remains unclear. The spectral assignments are aided by electronic structure calculations at the MCSCF, CCSD(T), and BCCD(T) levels of theory and correlation consistent basis sets. A significant presence of multireference character of the C(2)Xe system was noted and a linear ground-state structure is predicted. The computational results contradict previous density functional studies on the same system.  相似文献   

19.
Laser-ablated U atoms react with CO in excess argon to produce CUO, which is trapped in a triplet state in solid argon at 7 K, based on agreement between observed and relativistic density functional theory (DFT) calculated isotopic frequencies ((12)C(16)O, (13)C(16)O, (12)C(18)O). This observation contrasts a recent neon matrix investigation, which trapped CUO in a linear singlet state calculated to be about 1 kcal/mol lower in energy. Experiments with krypton and xenon give results analogous to those with argon. Similar work with dilute Kr and Xe in argon finds small frequency shifts in new four-band progressions for CUO in the same triplet states trapped in solid argon and provides evidence for four distinct CUO(Ar)(4-n)(Ng)(n) (Ng = Kr, Xe, n = 1, 2, 3, 4) complexes for each Ng. DFT calculations show that successively higher Ng complexes are responsible for the observed frequency progressions. This work provides the first evidence for noble gas-actinide complexes, and the first example of neutral complexes with four noble gas atoms bonded to one metal center.  相似文献   

20.
Photoionization of He droplets doped with rare gas atoms (Rg=Ne, Ar, Kr, and Xe) was studied by time-of-flight mass spectrometry, utilizing synchrotron radiation from the Advanced Light Source from 10 to 30 eV. High resolution mass spectra were obtained at selected photon energies, and photoion yield curves were measured for several ion masses (or ranges of ion masses) over a wide range of photon energies. Only indirect ionization of the dopant rare gas atoms was observed, either by excitation or charge transfer from the surrounding He atoms. Significant dopant ionization from excitation transfer was seen at 21.6 eV, the maximum of He 2p 1P absorption band for He droplets, and from charge transfer above 23 eV, the threshold for ionization of pure He droplets. No Ne+ or Ar+ signal from droplet photoionization was observed, but peaks from HenNe+ and HenAr+ were seen that clearly originated from droplets. For droplets doped with Rg=Kr or Xe, both Rg+ and HenRg+ ions were observed. For all rare gases, Rg2+ and HenRgm+ (n,m> or =1) were produced by droplet photoionization. Mechanisms of dopant ionization and subsequent dynamics are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号