首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solid-state structural transformation of the hydrogen-bonded 1D coordination polymer [Cd(bpe)(CH(3)COO)(2)(H(2)O)](n), to a ladder-type structure is evident from a photochemical [2 + 2] cycloaddition reaction forming 100% rctt-cyclobutane isomer.  相似文献   

2.
[2+3] Cycloaddition of nitrones to the nitrile ligands in the complexes cis- or trans-[PtCl2(PhCN)2] occurs under ligand differentiation and allows for selective synthesis of complexes of the type cis- or trans-[PtCl2(oxadiazoline)(PhCN)]. Microwave irradiation enhances the reaction rates of the cycloaddition considerably and further favours the selectivity towards the mono-cycloadduct with respect to thermal conditions, because the first cycloaddition is accelerated to a higher extent than the second one. Reaction of the trans-substituted mono-oxadiazoline complexes with a nitrone different from the one used for the first cycloaddition step gives access to mixed bis-oxadiazoline compounds of the composition trans-[PtCl2(oxadiazoline-a)(oxadiazoline-b)]. The corresponding cis-configured complexes, however, do not undergo further cycloaddition. All reactions described occur without isomerisation of the stereochemistry around the platinum center, independently of whether thermal or microwave heating is applied.  相似文献   

3.
Satoh Y  Obora Y 《Organic letters》2011,13(10):2568-2571
Three-component [2 + 2 + 2] cycloaddition of terminal alkynes, internal alkynes, and terminal alkenes is achieved using an NbCl(3)(DME) catalyst, leading to 1,3,4,5-substituted 1,3-cyclohexadienes in excellent yields with high chemo- and regioselectivity.  相似文献   

4.
Gas-phase reactions of acylium ions with alpha,beta-unsaturated carbonyl compounds were investigated using pentaquadrupole multiple-stage mass spectrometry. With acrolein and metacrolein, CH(3)-C(+)(double bond)O, CH(2)(double bond)CH-C(+)(double bond)O, C(6)H(5)-C(+)(double bond)O, and (CH(3))(2)N-C(+)(double bond)O react to variable extents by mono and double polar [4 + 2(+)] Diels-Alder cycloaddition. With ethyl vinyl ketone, CH(3)-C(+)(double bond)O reacts exclusively by proton transfer and C(6)H(5)-C(+)(double bond)O forms only the mono cycloadduct whereas CH(2)(double bond)CH-C(+)(double bond)O and (CH(3))(2)N-C(+)(double bond)O reacts to great extents by mono and double cycloaddition. The positively charged acylium ions are activated O-heterodienophiles, and mono cycloaddition occurs readily across their C(+)(double bond)O bonds to form resonance-stabilized 1,3-dioxinylium ions which, upon collisional activation, dissociate predominantly by retro-addition. The mono cycloadducts are also dienophiles activated by resonance-stabilized and chemically inert 1,3-dioxonium ion groups, hence they undergo a second cycloaddition across their polarized C(double bond)C ring double bonds. (18)O labeling and characteristic dissociations displayed by the double cycloadducts indicate the site and regioselectivity of double cycloaddition, which are corroborated by Becke3LYP/6-311++G(d,p) calculations. Most double cycloadducts dissociate by the loss of a RCO(2)COR(1) molecule and by a pathway that reforms the acylium ion directly. The double cycloadduct of the thioacylium ion (CH(3))(2)N-C(+)(double bond)S with acrolein dissociates to (CH(3))(2)N-C(+)(double bond)O in a sulfur-by-oxygen replacement process intermediated by the cyclic monoadduct. The double cycloaddition can be viewed as a charge-remote type of polar [4 + 2(+)] Diels-Alder cycloaddition reaction.  相似文献   

5.
The ruthenium hydride complex RuH(2)(CO)(PPh(3))(3) was found to be an effective catalyst for the cycloaddition reactions of terminal alkynes and azides. In the presence of RuH(2)(CO)(PPh(3))(3), various azides reacted with a range of terminal alkynes to produce 1,4-disubstituted 1,2,3-triazoles with 100% selectivity and moderate to excellent yields.  相似文献   

6.
Li L  Zhao MN  Ren ZH  Li JL  Guan ZH 《Organic letters》2012,14(13):3506-3509
New strategies for the oxidative cycloaddition of enones with enamines are developed. These cycloaddition reactions directly afford substituted aromatic amines, which are important in organic chemistry, in moderate to good yield. Cu(OAc)(2)/TFA is shown to be essential to achieve high reaction efficiency.  相似文献   

7.
Conveniently substituted bis-beta-lactams, pyrrolidinyl-beta-lactams, and piperidinyl-beta-lactams undergo ring-closing methatesis using Grubbs' carbene, Cl(2)(Cy(3)P)(2)Ru=CHPh, to give medium-sized rings fused to bis-2-azetidinone, pyrrolidinyl-2-azetidinone, or piperidinyl-2-azetidinone systems. The diolefinic cyclization precursors can be obtained from optically pure 4-oxoazetidine-2-carbaldehydes bearing an extra alkene tether at position 1 or 3 of the beta-lactam ring via [2 + 2] cycloaddition of imino 2-azetidinones, N-metalated azometine ylide [3 + 2] cycloaddition, and subsequent N-acylation of the pyrrolidinyl nitrogen atom, or through aza-Diels-Alder cycloaddition of 2-azetidinone-tethered imines. Under standard reaction conditions, the combination of cycloaddition reactions of 2-azetidinone-tethered imines with ring-closing methatesis offers an asymmetric entry to a variety of unusual fused tricyclic 2-azetidinones bearing two bridgehead nitrogen atoms.  相似文献   

8.
One-dimensional hydrogen-bonded complex [Zn(bpe)(2)(H(2)O)(4)](NO(3))(2).8/3 H(2)O.2/3 bpe (1, bpe=4,4'-bipyridylethylene) containing coordination complex cations [Zn(bpe)(2)(H(2)O)(4)](2+) with parallel and crisscross double bonds undergoes photochemical [2+2] cycloaddition in the solid state and produces tetrakis(4-pyridyl)cyclobutane (tpcb) in up to 100 % yield with rctt-tpcb (2a) as major and rtct-tpcb (2b) as minor product. The bpe ligands with crisscross conformation of C=C bonds appear to undergo pedal-like motion prior to photodimerization. Grinding single crystals to powder accelerates the pedal motion of crisscrossed olefins in the bpe ligands to parallel alignment and provides the rctt-cyclobutane stereoisomer 2a quantitatively. In addition, 100 % photodimerization of ground 1 indicates that the free bpe ligands, which are remote from each other in a pool of water, and NO(3)(-) ions moved toward each other to give a mixture of rctt- and rtct-tpcb isomers.  相似文献   

9.
Rh COT in the act: a Ni(0)-catalyzed [2+2+2+2] cycloaddition provides a high-yielding, scalable synthesis of the ligand dinaphtho[a,e]cyclooctatetraene (dnCOT). dnCOT complexation with Rh(I) gives [Rh(dnCOT)(MeCN)(2)]SbF(6), an excellent catalyst for [5+2] cycloadditions of vinylcyclopropanes and π-systems with impressive functional group compatibility.  相似文献   

10.
The first example of enantioselective intermolecular cycloaddition of carbonyl ylides with indoles is described. The cycloaddition of five- and six-membered carbonyl ylides derived from diazodiketoesters with N-methylindoles under catalysis by dirhodium(II) tetrakis[N-tetrachlorophthaloyl-(S)-tert-leucinate], Rh(2)(S-TCPTTL)(4), gave cycloadducts in high yields and with high levels of enantioselectivity (up to 99% ee) as well as excellent exo diastereoselectivity.  相似文献   

11.
An in-depth study of the cobalt-catalyzed [2+2+2] cycloaddition between yne-ynamides and nitriles to afford aminopyridines has been carried out. About 30 nitriles exhibiting a broad range of steric demand and electronic properties have been evaluated, some of which open new perspectives in metal-catalyzed arene formation. In particular, the use of [CpCo(CO)(dmfu)] (dmfu=dimethyl fumarate) as a precatalyst made possible the incorporation of electron-deficient nitriles into the pyridine core. Modification of the substitution pattern at the yne-ynamide allows the regioselectivity to be switched toward 3- or 4-aminopyridines. Application of this synthetic methodology to the construction of the aminopyridone framework using a yne-ynamide and an isocyanate was also briefly examined. DFT computations suggest that 3-aminopyridines are formed by formal [4+2] cycloaddition between the nitrile and the intermediate cobaltacyclopentadiene, whereas 4-aminopyridines arise from an insertion pathway.  相似文献   

12.
We have experimentally investigated bonding of the nitrile functional group (R-Ctbd1;N:) on the Ge(100)-2x1 surface with multiple internal reflection infrared spectroscopy. Density functional theory calculations are used to help explain trends in the data. Several probe molecules, including acetonitrile, 2-propenenitrile, 3-butenenitrile, and 4-pentenenitrile, were studied to elucidate the factors controlling selectivity and competition on this surface. It is found that acetonitrile does not react on the Ge(100)-2x1 surface at room temperature, a result that can be understood with thermodynamic and kinetic arguments. A [4+2] cycloaddition product through the conjugated pi system and a [2+2] C=C cycloaddition product through the alkene are found to be the dominant surface adducts for the multifunctional molecule 2-propenenitrile. These two surface products are evidenced, respectively, by an extremely intense nu(C=C=N), or ketenimine stretch, at 1954 cm(-)(1) and the nu(Ctbd1;N) stretch near 2210 cm(-)(1). While the non-conjugated molecules 3-butenenitrile and 4-pentenenitrile are not expected to form a [4+2] cycloaddition product, both show vibrational modes near 1954 cm(-)(1). Additional investigation suggests that 3-butenenitrile can isomerize to 2-butenenitrile, a conjugated nitrile, before introduction into the vacuum chamber, explaining the presence of the vibrational modes near 1954 cm(-)(1). Pathways directly involving only the nitrile functional group are thermodynamically unfavorable at room temperature on Ge(100)-2x1, demonstrating that this functional group may prove useful as a vacuum-compatible protecting group.  相似文献   

13.
CpCoI‐olefin‐phosphite and CpCoI‐bisphosphite complexes were systematically prepared and their reactivity in [2+2+2] cycloaddition reactions compared with highly active [CpCo(H2C?CHSiMe3)2] ( 1 ). Whereas 1 is an excellent precursor for the synthesis of [CpCo(olefin)(phosphite)] complexes ( 2 a – f ), [CpCo(phosphite)2] complexes ( 3 a – e ) were prepared photochemically from [CpCo(cod)]. The complexes were evaluated in the cyclotrimerization reaction of diynes with nitriles yielding pyridines. For [CpCo(olefin)(phosphite)], as well as some of the [CpCo(phosphite)2] complexes, reaction temperatures as low as 50 °C were sufficient to perform the cycloaddition reaction. A direct comparison showed that the order of reactivity for the complex ligands was olefin2>olefin/phosphite>phosphites2. The complexes with mixed ligands favorably combine reactivity and stability. Calculations on the ligand dissociation from [CpCo(olefin)(phosphite)] proved that the phosphite is dissociating before the olefin. [CpCo(H2C?CHSiMe3){P(OPh)3}] ( 2 a ) was investigated for the co‐cyclization of diynes and nitriles and found to be an efficient catalyst at rather mild temperatures.  相似文献   

14.
Cycloaddition reactions of allenylphosphonates [(RO)(2)P(O)[(R(1))C═C═CR(2)(2)] with dialkyl acetylenedicarboxylates, 1,3-diphenylisobenzofuran, and anthracene have been investigated and compared with those of allenoates [(EtO(2)C)RC═C═CH(2)] and allenylphosphine oxides [Ph(2)P(O)(R(1))C═C═CR(2)(2)] in selected cases. Allenylphosphonates (RO)(2)P(O)(Ar)C═C═CH(2) with an α-aryl group preferentially undergo [4 + 2] cycloaddition with DMAD/DEAD under thermal activation, but in addition to the expected 1:1 (allene: DMAD) product, the reaction also leads to 1:2 as well as 2:1 products that were not reported before. When an extra vinyl group is present at the γ-carbon of allenylphosphonate [e.g., (OCH(2)CMe(2)CH(2)O)P(O)(Ph)C═C═CH(C═CHMe)], [4 + 2] cycloaddition takes place utilizing either the vinylic or the aryl end, but additionally a novel cyclization wherein complete opening of the [β,γ] carbon-carbon double bond of the allene is realized. In contrast to these, the reaction of allenylphosphonate (OCH(2)CMe(2)CH(2)O)P(O)(H)C═C═CMe(2) possessing a terminal ═CMe(2) group with DMAD occurs by both [2 + 2] cycloaddition and ene reaction. While the reaction of ═CH(2) terminal allenylphosphonates as well as allenylphosphine oxides with 1,3-diphenylisobenzofuran afforded preferentially endo-[4 + 2] cycloaddition products via [α,β] attack, the analogous allenoates [(EtO(2)C)RC═C═CH(2)] underwent exo-[4 + 2] cyclization. Under similar conditions, allenylphosphonates with a terminal ═CR(2) group gave only [β,γ]-cycloaddition products. An unusual ring-opening of a [4 + 2] cycloaddition product followed by ring-closing via [4 + 4] cycloaddition, as revealed by (31)P NMR spectroscopy, is reported. Anthracene reacted in a manner similar to 1,3-diphenylisobenzofuran, albeit with lower reactivity. Key products, including a set of exo- and endo- [4 + 2] cycloaddition products, have been characterized by single crystal X-ray crystallography.  相似文献   

15.
The first catalytic asymmetric hetero-Diels-Alder reaction between 2-aza-3-silyloxy-1,3-butadienes and aldehydes is described. With dirhodium(II) tetrakis[N-benzene-fused-phthaloyl-(S)-piperidinonate], Rh(2)(S-BPTPI)(4), the cycloaddition reaction proceeded exclusively in an endo mode to give all-cis-substituted 1,3-oxazinan-4-ones in high yields with up to 98% ee.  相似文献   

16.
The thermal decomposition of Se(NAd)(2) (Ad = 1-adamantyl) in THF was monitored by (77)Se NMR and shown to give the novel cyclic selenium imide Se(3)(NAd)(2) as one of the products. An X-ray structural determination showed that Se(3)(NAd)(2) is a puckered five-membered ring with d(Se-Se) = 2.404(1) A and |d(Se-N)| = 1.873(4) A. On the basis of (77)Se NMR data, other decomposition products include the six-membered ring Se(3)(NAd)(3), and the four-membered rings AdNSe(micro-NAd)(2)SeO and OSe(micro-NAd)(2)SeO. The energies for the cyclodimerization of E(NR)(2) and RNEO (E = S, Se; R = H, Me, (t)Bu, SiMe(3)), and the cycloaddition reactions of RNSeO with E(NR)(2), RNSO(2) with Se(NR)(2), and S(NR)(2) with Se(NR)(2) have been calculated at MP2, CCSD, and CCSD(T) levels of theory using the cc-pVDZ basis sets and B3PW91/6-31G* optimized geometries. Sulfur(IV) and selenium(IV) diimide monomers are predicted to be stable, the sole exception being Se(NSiMe(3))(2) that shows a tendency toward cyclodimerization. The cyclodimerization energy for RNSeO and the cycloaddition reaction energies of RNSeO with Se(NR)(2) as well as that of RNSO(2) with Se(NR)(2) are negative, consistent with the observed formation of OSe(micro-N(t)Bu)(2)SeO, OSe(micro-N(t)Bu)(2)SeN(t)Bu, and O(2)S(micro-N(t)Bu)(2)SeN(t)Bu, respectively. Cycloaddition is unlikely when one of the reactants is a sulfur(IV) diimide.  相似文献   

17.
The cycloaddition between 2-alkoxy-1,1-cyclobutane diesters and aromatic, heteroaromatic, or aliphatic aldehydes under Yb(OTf)(3) catalysis generates tetrahydropyrans in high yields with exclusive cis-stereochemistry.  相似文献   

18.
The reaction of nido-[1,2-(Cp*RuH)(2)B(3)H(7)] (1a, Cp*=η(5)-C(5)Me(5)) with [Mo(CO)(3)(CH(3)CN)(3)] under mild conditions yields the new metallaborane arachno-[(Cp*RuCO)(2)B(2)H(6)] (2). Compound 2 catalyzes the cyclotrimerization of a variety of internal- and terminal alkynes to yield mixtures of 1,3,5- and 1,2,4-substituted benzenes. The reactivities of nido-1a and arachno-2 with alkynes demonstrates that a change in geometry from nido to arachno drives a change in the reaction from alkyne-insertion to catalytic cyclotrimerization, respectively. Density functional calculations have been used to evaluate the reaction pathways of the cyclotrimerization of alkynes catalyzed by compound 2. The reaction involves the formation of a ruthenacyclic intermediate and the subsequent alkyne-insertion step is initiated by a [2+2] cycloaddition between this intermediate and an alkyne. The experimental and quantum-chemical results also show that the stability of the metallacyclic intermediate is strongly dependent on the nature of the substituents that are present on the alkyne.  相似文献   

19.
The intramolecular [4C+3C] cycloaddition reaction of allenedienes catalysed by PtCl(2) and several Au(I) complexes has been studied by means of DFT calculations. Overall, the reaction mechanism comprises three main steps: (i) the formation of a metal allyl cation intermediate, (ii) a [4C(4π)+3C(2π)] cycloaddition that produces a seven-membered ring and (iii) a 1,2-hydrogen migration process on these intermediates. The reaction proceeds with complete diastereochemical control resulting from a favoured exo-like cycloaddition. Allene substituents have a critical influence in the reaction outcome and mechanism. The experimental observation of [4C+2C] cycloadducts in the reaction of substrates lacking substituents at the allene terminus can be explained through a mechanism involving Pt(IV)-metallacycles. With gold catalysts it is also possible to obtain [4C+2C] cycloaddition products, but only with substrates featuring terminally disubstituted allenes, and employing π-acceptor ligands at gold. However the mechanism for the formation of these adducts is completely different to that proposed with PtCl(2), and consists of the formation of a metal allyl cation, subsequent [4C+3C] cycloaddition and a 1,2-alkyl shift (ring contraction). Electronic analysis indicates that the divergent pathways are mainly controlled by the electronic properties of the gold heptacyclic species (L-Au-C(2)), in particular, the backdonation capacity of the metal center to the unoccupied C(2) (pπ-orbital) of the intermediate resulting from the [4C+3C] cycloaddition. The less backdonation, (i.e. using P(OR)(3)Au(+) complexes), the more favoured is the 1,2-alkyl shift.  相似文献   

20.
A class of alkenyl propargyl acetates, RCH(OAc)C≡CC(CH(3))═CH(2) (5), are found to undergo [4 + 1] cycloaddition with CO (1 atm) in the presence of [RhCl(CO)(2)](2) in refluxing 1,2-dichloroethane to give cyclopentenones (6) in good yields. It has been demonstrated that, when the R group of 5 is a phenyl group bearing o-electron-withdrawing substituents, up to 10:1 diastereoselectivity and 96% yield can be achieved for the [4 + 1] cycloaddition. This process provides a convenient method to construct highly functionalized cyclopentenones that are useful in organic synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号