首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the evolution of a characteristic shock in a dusty gas is investigated and its interaction with a weak discontinuity wave is studied. The transport equation for the amplitude of the weak discontinuity wave, which is of Bernoulli type, is obtained. The amplitudes of the reflected and transmitted waves after interaction of the weak discontinuity with the characteristic shock are evaluated by using the results of the general theory of wave interaction.   相似文献   

2.
3.
We consider the process of the interaction of aplanar shock wave with a magnetic field (impact on a magnetic wall) in a medium having finite conductivity.The problem cannot be solved analytically in the general form. Numerical methods are used to study the problem. A computer is used to calculate the complete system of one-dimensional nonsteady equations of MHD with finite conductivity which depends on temperature in a nonlinear fashion. Results are also presented of particular analytic solutions obtained under simplifying assumptions.We discuss the dependence of the process dynamics on the magnitude of the magnetic field intensity and the law of variation of the medium conductivity with temperature.In the numerical calculations we note the formation of a T-layer, a phenomenon which occurs under definite conditions in unsteady MHD problems [1].In conclusion the authors wish to thank N. G. Basov, A. A. Samarskli, and O. N. Krokhin for posing the problem and for fruitful discussions, and also D. A. Gol'din and A. A. Ivanov for carrying out the numerical calculations.  相似文献   

4.
A. Strumia 《Meccanica》1979,14(2):67-71
Summary Transmission and reflection of an electromagnetic discontinuity wave colliding with a non characteristic shock in a dielectric medium with non-linear constitutive equation is analyzed in the case of polarized fields depending on one space variable and time. The transmitted and reflected amplitudes are obtained; the evolution law of the transmitted discontinuity is integrated for propagation through a constant state and the appearing of a new value of the critical time is discussed.
Sommario Viene analizzata la collisione di un'onda elettromagnetica di discontinuità con un urto non caratteristico in un mezzo dielettrico avente equazione costitutiva non lineare, per campi polarizzati e dipendenti da una sola variabile spaziale e dal tempo. Vengono ricavate le ampiezze trasmessa e riflessa. Si integra poi la legge di evoluzione della discontinuità trasmessa nel caso della propagazione in uno stato costante e si discute la comparsa di un nuovo valore per il tempo critico.


Lavoro eseguito durante il godimento di una borsa di studio nell'ambito del G.N.F.M. del C.N.R.  相似文献   

5.
6.
The acceleration by an incident shock of a planar interface between a gas and a particle-gas mixture has been investigated experimentally and numerically. The experiments were conducted in a newly developed vertical shock tube in which the planar interface of the particle-gas mixture was generated and its particle concentration history was measured. Polydisperse corn starch particles with a mean diameter of 10m were used. We recorded the motion of the interface, as well as of the incident and reflected shock by using a 4 channel spark shadowgraph. The experimental conditions were Mach numberM s=5.15 and initial pressurep 1=50kPa for various particle concentrations in nitrogen. The reflected shock appears with a delay after the incident shock enters the particle-gas mixture. Numerical methods were employed to solve the two-phase governing equations. Experiments and numerical solutions are in good agreement.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

7.
An experimental and numerical study was made of shock wave transition over slitted wedges. Experiments were conducted in a shock tube by using double exposure holographic interferometry. Shock Mach numbers ranged from 1.07 to 3.03 in air. Slitted wedge models having perforation ratios of 0.34 and 0.4 were installed in the test section. The critical transition angle was obtained analytically by the shock polar analysis where effects of boundary conditions, wall suction, and surface roughness were empirically taken into account. As the results, it was found that for stronger shock waves and a perforation ratio of 0.4, the critical transition angle was decreased by about 10° in comparison to the detachment criterion. A flow visualization study clarified various wave interaction mechanisms associated with the wall suction. The critical transition angle was successfully explained by the shock polar analysis. The PLM numerical simulation was also conducted. The numerical result agreed very well with the experimental findings.  相似文献   

8.
The evolution of incompressible and compressible isotropic 2-d turbulent fields interacting with a normal shock wave up to Mach numbers of 2.4 was investigated by means of direct numerical simulation using an ENO scheme. A comparison of statistics with linear analysis results is presented. Vorticity amplification in the DNS agrees well with the linear theory. Energy spectra are enhanced more in the small scales than in the large scales for incoming incompressible turbulence. The amplification rate for initially compressible turbulence is comparatively small.  相似文献   

9.
This is a detailed experimental study of the behavior of diffraction and refraction of a shock front resulting from the interaction of a shock wave and a vortex ring. A spherical shock wave impinges on a vortex ring which is traveling at a high speed in the opposite direction. The configuration of the wave front is visualized by a shadowgraph technique using a pulse dye laser. The shock front is influenced by the non-uniform flow induced by the vortex and diffracted around the vortex core. The shock front passing through the inside of the ring is decelerated by the counter-flow, and the density behind it increases. The diffracted front over the vortex ring expands spirally around the core and intersects the front passing through the inside of the ring. The intersecting circular curve converges toward the central axis of the ring. The diffracted shock in the inner part of the core forms branching waves. The branching points also focus on the central axis of the ring.  相似文献   

10.
11.
12.
13.
The structure of a wave of rarefaction (relief wave) created by the interaction of a shock wave with a point sink is considered. A singular region occurs in the relief wave in the angular range π/2≤θ≤3/2π; in this region the pressure exceeds that in the transmitted wave. Qualitative comparison is made with experimental results.  相似文献   

14.
The author's model [1] of a multicomponent liquid medium with nonlinear limiting compression diagrams and constant coefficient of viscosity is improved by the introduction of a coefficient of viscosity that varies during the deformation. The new model is used to obtain a numerical solution to the problem of the propagation of a plane wave produced by a shock load and the interaction of the wave with a fixed obstacle. Such a problem was solved earlier [2] in the case of a viscous medium for linear diagrams of static and dynamic compression and constant coefficient of viscosity. It is shown that the nonlinearity of the diagram of static compression leads with increasing pressure first to an increase in the reflection coefficient and then to a decrease of it. If the load has a sufficient duration, the initial section of the obstacle is subject to a succession of several waves, the number of which increases with increasing duration and amplitude of the load. The calculation was made for glycerine with air bubbles. It is assumed that at pressures up to 400·105 N/m2 glycerine is a linearly elastic medium In this case, the dynamic compression diagram of the two-component glycerine—gas-bubble medium is linear.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 183–187, May–June, 1981.I thank Yu. A. Sozonenko for discussion and valuable comments.  相似文献   

15.
A speckle photographic method, which is sensitive to changes of gradients in fluid density, is applied for analyzing a compressible turbulent air flow with density fluctuations. Spatial correlation coefficients, turbulent length scales, and energy spectra are determined under the assumption of homogeneous isotropic turbulence. The experiments are performed in a shock tube where the flow is passed through a turbulence grid. Measurements are taken before and after the turbulent regime interacts with the normal shock wave reflected from the tube's end wall. Amplification of the turbulence intensity by the shock interaction process is verified quantitatively and is shown to be restricted to the lower wave numbers in the spectrum.A version of this paper was presented at the 11th Symposium on Turbulence, University of Missouri-Rolla, Oct. 17–19, 1988.To Professor Dr.-Ing. Klaus Gersten on the occasion of his 60th birthday  相似文献   

16.
17.
The interaction of a planar shock wave with a loose dusty bulk layer has been investigated both experimentally and numerically. Experiments were conducted in a shock tube. The incident shock wave velocity and particle diameters were measured with the use of pressure transducers and a Malvern particle sizer, respectively. The flow fields, induced by shock waves, of both gas and granular phase were visualized by means of shadowgraphs and pulsed X-ray radiography with trace particles added. In addition, a two-phase model for granular flow presented by Gidaspow is introduced and is extended to describe such a complex phenomenon. Based on the kinetic theory, such a two-phase model has the advantage of being able to clarify many physical concepts, like particulate viscosity, granular conductivity and solid pressure, and deduce the correlative constitutive equations of the solid phase. The AUSM scheme was employed for the numerical calculation. The flow field behind the shock wave was displayed numerically and agrees well with our corresponding experimental results.   相似文献   

18.
19.
We present the results of the numerical modelling of the interaction of a shock wave with a cloud of finite size particles. The computations were carried out within the framework of continuum/discrete model with the use of the techniques of digital diagnostics and pattern recognition. The shock wave and vortex formation behind the cloud of particles as well as the formation of a dense layer in the cloud have been revealed. For this reason, the use of a cloud of particles for relaxing the shock wave may prove to be inefficient.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号