首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Results from chemical trapping experiments in micellar solutions containing 1.5-5 mM aqueous solutions of three didodecyl dicationic dibromide gemini surfactants with different methylene spacer lengths (12-n-12 2Br where n = 2-4 CH(2) groups) gave quantitative estimates of the molarities of interfacial bromide (Br(m)) and water (H(2)O(m)), the fractions of free and paired headgroups and counterions, and the net headgroup charge. These results are one of the most detailed compositional studies of an association colloid interface to date. Br(m) increases and H(2)O(m) decreases as n decreases and the two cationic charges are closer together. The 12-2-12 2Br gemini (the only one of the three geminis known to form threadlike micelles) shows a marked increase in Br(m) (from 2.3 to 3.6 M) and a decrease in H(2)O(m) (from 35 to 17 M) at the exceptionally low surfactant concentration in the vicinity of the previously reported sphere-to-rod transition or second cmc concentration. Rod formation occurs because of an increase in headgroup-counterion association and dehydration at the micelle surface that depend on both the free energies of hydration and specific ion interactions and surfactant and counterion concentrations. These and other recent chemical trapping results support a new model for the balance of forces controlling morphological transitions of association colloids. The hydrophobic effect drives the formation of headgroup-counterion pairs, which have a lower demand for water of hydration. Release of water permits tighter packing and formation of cylindrical aggregates.  相似文献   

2.
The change in the morphology of a series of dicationic gemini surfactants C(14)H(29)(CH(3))(2)N(+)-(CH(2))(s)-N(+)(CH(3))(2)C(14)H(29), 2Br(-) (14-s-14; s=4-6) on their interaction with inorganic (KBr, KNO(3), KSCN) and organic salts (NaBenz, NaSal) have been thoroughly investigated by means of (1)H NMR spectral analysis and the results are well supported by viscosity measurements. The presence of salt counterions results in structural transition (spherical to nonspherical) of gemini micelles in aqueous solution. With an increase in salt concentration all the three gemini surfactants showed changes in their aggregate morphology. This change is dependent on the nature and size of the added counterion. The effect of inorganic counterions on the micellar growth is observed to follow the Hofmeister series (Br(-) < NO(3)(-) < SCN(-)). The roles of organic counterions are discussed on the basis of probable solubilization sites of the substrate molecule in the gemini micelles, showing more growth in case of Sal(-) than Benz(-). The results are confirmed in terms of the obtained values of chemical shift (δ), line width at half height (lw), and relative viscosity (η(r)). Also, the growth of micelles was most pronounced for the gemini surfactant with the shortest spacer (s=4). This was attributed to the unique molecular structure of gemini surfactant micelles having flexible polymethylene spacer chain linking the twin polar headgroups.  相似文献   

3.
Anno Wagenaar 《Tetrahedron》2007,63(43):10622-10629
Reduced-sugar based gemini surfactants with an α,ω-diamino-(oxa)alkyl spacer exhibit a rich pH-dependent aggregation behavior and are efficient DNA carriers in gene transfection. Herein, we describe an improved synthetic procedure for these amphiphiles. First, a series of novel nonionic bolaform amphiphiles with identical headgroups and α,ω-diamino-(oxa)alkyl spacers were synthesized by reductive aminations involving α,ω-diaminoalkanes and the appropriate sugars or aldehydes. The bolaform compounds were used as starting materials for the synthesis of the corresponding reduced-sugar based gemini surfactants in a reductive alkylation reaction employing a polymer-bound cyanoborohydride. A series of new gemini surfactants have been synthesized and characterized.  相似文献   

4.
Membrane formation from gemini pseudoglyceryl lipids bearing n-C14H29 and n-C16H33 chains has been reported. These lipid aggregates have been characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), high sensitivity differential scanning calorimetry (DSC), and Paldan fluorescence studies. The length of the spacer between the cationic ammonium headgroups has been varied from -(CH2)3- (propandiyl) to -(CH2)12- (dodecandiyl) in these lipids. All gemini lipids were found to generate stable suspensions in aqueous media. Electron microscopic studies revealed the smaller size of the gemini lipid aggregates as compared to their monomeric lipid counterparts. DLS measurements showed that the gemini lipid suspensions with a -(CH2)8- spacer length were bigger in size than that of other analogues. DSC studies suggest the unusual behavior of the gemini lipids bearing -(CH2)3- propanediyl spacer based lipids. These observations were consistent irrespective of the hydrocarbon chain lengths of the lipids. Paldan fluorescence based hydration studies showed that the hexadecyl chain based gemini lipid aggregates bearing a -(CH2)12- spacer were the most hydrated in their gel states among all the gemini lipid series investigated herein.  相似文献   

5.
Membrane-forming properties of five new gemini cationic lipids possessing an aromatic backbone between the headgroup and hydrocarbon chains have been presented. These gemini lipids differ by the number of polymethylene units [-(CH(2))(n)-] between the cationic ammonium -[N(+)(CH(3))(2)]- headgroups. The membrane-forming properties of these gemini lipids have been studied in detail by transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), high-sensitivity differential scanning calorimetry (DSC), Paldan fluorescence studies, and UV-vis absorption spectroscopy. The electron micrographs and dynamic light scattering of their aqueous suspensions confirmed the formation of vesicular-type aggregates. The vesicle sizes and morphologies were found to depend strongly on the n-value of the spacer. Information on the thermotropic and hydration properties of the resulting vesicles was obtained from differential scanning calorimetry and temperature-dependent Paldan fluorescence studies, respectively. Examination of the thermotropic phase-transition properties of the lipid aggregates revealed interesting features of these lipids, which were found to depend on the length of the spacer chain. Paldan fluorescence studies indicate that the membranes of the gemini lipids are less hydrated as compared to that of the monomeric counterpart in their solid-gel state. In contrast in their fluid, liquid-crystalline phase, the hydration of gemini lipid aggregates was found to depend strongly on the length of the spacer. UV-vis absorption studies suggest an apparent H-type aggregate formation in the gemini lipid membranes in the gel states. In fluid state of the lipid membranes, H-aggregate formation was found to be enhanced depending on the length of the spacer. Such an understanding of the properties upon membrane formation from this new class of gemini lipids will be useful for further development of related gene delivery systems.  相似文献   

6.
The mixed micelles of cationic gemini surfactants C12C(S)C12Br2 (S=3, 6, and 12) with the nonionic surfactant Triton X-100 (TX100) have been studied by steady-state fluorescence, time-resolved fluorescence quenching, electrophoretic light scattering, and electron spin resonance. Both the surfactant composition and the spacer length are found to influence the properties of mixed micelles markedly. The total aggregation number of alkyl chains per micelle (N(T)) goes through a minimum at X(TX100)=0.8. Meanwhile, the micropolarity of the mixed micelles decreases with increasing X(TX100), while the microviscosity increases. The presence of minimum in N(T) is explained in terms of the competition of the reduction of electrostatic repulsion between headgroups of cationic gemini surfactant with the enhancement of steric repulsion between hydrophilic headgroups of TX100 caused by the addition of TX100. The variations of micropolarity and microviscosity indicate that the incorporation of TX100 to the gemini surfactants leads to a more compact and hydrophobic micellar structure. Moreover, for the C12C3C12Br2/TX100 mixed micelle containing C12C3C12Br2 with a shorter spacer, the more pronounced decrease of N(T) at X(TX100) lower than 0.8 may be attributed to the larger steric repulsion between headgroups of TX100. Meanwhile, the increase of microviscosity and the decrease of micropolarity are more marked for the C12C12C12Br2/TX100 mixed micelle, owing to the looped conformation of the longer spacer of C12C12C12Br2.  相似文献   

7.
Steady-state fluorescence, time-resolved fluorescence quenching, and isothermal titration microcalorimetry have been used to study the interactions of cationic gemini surfactants alkanediyl-alpha,omega-bis(dodecyldimethylammonium bromide) (C(12)C(S)C(12)Br(2), S = 3, 6, and 12) with hydrophobically modified poly(acrylamide) (HMPAM) and unmodified poly(acrylamide) (PAM). Without addition of gemini surfactant, 0.2 wt % HMPAMs except PAM have already self-aggregated into hydrophobic aggregates. Different from single-chain surfactants, C(12)C(S)C(12)Br(2) have stronger interactions with HMPAMs to form surfactant/polymer aggregates, even with PAM. Addition of C(12)C(S)C(12)Br(2) may cause the disruption of HMPAM hydrophobic aggregates and the formation of mixed micelles. It is found that HMPAMs generate lower micropolarity of mixed micelles, larger values of enthalpy of interaction (DeltaH(ps)), and nearly constant values of Gibbs free energy of interaction (DeltaG(ps)). On the other hand, C(12)C(S)C(12)Br(2) with longer spacer brings out slightly lower micropolarity of mixed micelles, owing to the lower electrostatic repulsion between surfactant headgroups. Especially for C(12)C(12)C(12)Br(2), the values of DeltaH(ps) are much more endothermic and the values of DeltaG(ps) are much less negative. The weaker interactions of C(12)C(12)C(12)Br(2) with HMPAMs arise from the marked reduction of attraction between surfactant headgroups and polymer hydrophilic groups induced by its longer spacer.  相似文献   

8.
Both thermodynamic and microenvironmental properties of the micelles for a series of cationic surfactants hexadecyltrimethylammonium (C16TAX) with different counterions, F-, Cl-, Br-, NO3-, and (1/2)SO4(2-), have been studied. Critical micelle concentration (CMC), degree of micelle ionization (alpha), and enthalpy of micellization (DeltaH(mic)) have been obtained by conductivity measurements and isothermal titration microcalorimetry. Both the CMC and the alpha increase in the order SO4(2-) < NO3- < Br- < Cl- < F-, consistent with a decrease in binding of counterion, except for the divalent anion sulfate. DeltaH(mic) becomes less negative through the sequence NO3- < Br- < Cl- < F- < SO4(2-), and even becomes positive for the divalent sulfate. The special behavior of sulfate is associated with both its divalency and its degree of dehydration. Gibbs free energies of micellization (DeltaG(mic)) and entropies of micellization (DeltaS(mic)) have been calculated from the values of DeltaH(mic), CMC, and alpha and can be rationalized in terms of the Hofmeister series. The variations in DeltaH(mic) and DeltaS(mic) have been compared with those for the corresponding series of gemini surfactants. Electron spin resonance has been used to assess the micropolarity and the microviscosity of the micelles. The results show that the microenvironment of the spin probe in the C16TAX surfactant micelles depends strongly on the binding of the counterion.  相似文献   

9.
Five pseudoglyceryl backbone based gemini lipids possessing varying lengths of oxyethylene [(-CH2-O-CH2-)n] spacers between cationic ammonium head groups have been synthesized, where n varies from 1 to 5. The membrane-forming properties of these gemini cationic lipids have been investigated. All the gemini lipids formed stable suspensions in water. The presence of membranous aggregates in such lipid suspensions was evidenced by transmission electron microscopy. The membrane-forming characteristics of these gemini lipids were compared with those of the corresponding monomeric lipid with one head group to understand the effect of lipid dimerization. The lipid suspensions were further characterized by dynamic light scattering and zeta potential measurements. Except for the gemini lipid with -CH2-CH2-O-CH2-CH2- spacer (2a), zeta potential of aggregates of all other gemini lipids were significantly greater than that of monomeric lipid suspensions. X-ray diffraction studies with lipid cast films revealed the increase in membrane bilayer width with increase in the length of the spacer (-CH2-O-CH2-)n. Clear thermotropic phase transitions typical of membranous assemblies were observed for all the lipid suspensions by high sensitivity differential scanning calorimetry. Aggregates of gemini lipid 2a bearing one oxyethylene [-(CH2-CH2-O-CH2-CH2)-] unit between headgroups manifested the highest phase transition temperature as compared to other gemini analogues as well as that of monomeric lipid 1. The phase transitions were reversible and exhibited large hysteresis, indicating that the observed phase transitions were of first order. To probe the surface hydration of these membranous aggregates, Paldan fluorescence studies were performed. These studies indicated the high polarity of the vesicular surface of gemini lipid 2a both in the gel and fluid melted phase as compared to vesicles of other gemini lipids.  相似文献   

10.
N,N,N',N'-Tetramethylimidazolidinium dichloride (1-Im-1 2Cl) has been studied as a model system for cation-anion interactions in the interfacial regions of gemini micelles by X-ray crystallography, density functional theory (DFT) calculations, and infrared spectroscopy. Single crystals of 1-Im-1 2Cl contain 1-Im-1 dications, whose five-membered rings adopt a distorted envelope conformation. Eight chloride anions surround each dication, two of which are cradled above and below the five-membered ring (apical) and six of which are dispersed about the periphery of the ring (equatorial). The cations and anions are linked in the solid state by an extensive network of weak C-H...Cl hydrogen bonds that involve all of the H atoms of the dication. The calculated (DFT at the 6-31+G(d) level) structure of the asymmetric unit, which consists of a dication and two apical chloride ions, closely resembles the equivalent unit in the crystal structure with respect to bond distances and angles, the conformation of the 1-Im-1 ring, and the nature and location of the C-H...Cl hydrogen bonds. The calculated IR spectrum predicts a number of absorptions in the 3000 cm(-1) region, assigned as C-H...Cl stretching modes, which are consistent with the presence of an intense band in the observed IR spectrum of the crystals. Over all, this study supports the notion that apical chloride ions interact more strongly with gemini surfactant headgroups by forming multiple hydrogen bonds in ion pairs of a type that cannot be present in the corresponding ion pairs of quaternary headgroups with counterions of single-chain surfactants.  相似文献   

11.
Hung M  Bakac A 《Inorganic chemistry》2005,44(25):9293-9298
The reaction between the aqueous chromyl ion, CraqO2+, and Br- is acid-catalyzed and generates Br2. Kinetic studies that utilized a superoxochromium ion, CraqOO2+, as a kinetic probe yielded a mixed third-order rate law, -d[CraqO2+]/dt=k[CraqO2+][Br-][H+], where k=608+/-11 M-2 s-1. Experimental data strongly favor a one-electron mechanism, but the reaction is much faster than predicted on the basis of the reduction potential for the Br*/Br- couple. The reduction of CraqO2+ by transition-metal complexes, on the other hand, exhibits "normal" behavior, that is, k=(1.37x10(3)+1.94x10(3) [H+]) M-1 s-1 for Os(1,10-tris-phenanthroline)(3)2+ and <10 M-1 s-1 for Ru(2,2'-bipyridine)3(2+) at 0.1 M H+. The reduction of CraqOO2+ by Br2*- takes place with a rate constant k=(1.23+/-0.20)x10(9) M-1 s-1, as determined by laser-flash photolysis.  相似文献   

12.
Understanding factors responsible for the fluorescence behavior of conjugated polyelectrolytes and modulation of their behavior are important for their application as functional materials. The interaction between the anionic poly{1,4-phenylene-[9,9-bis(4-phenoxy-butylsulfonate)]fluorene-2,7-diyl}copolymer (PBS-PFP) and cationic gemini surfactants alpha,omega-(CmH2m+1N+(CH3)2)2(CH2)s(Br-)2 (m-s-m; m=12, s=2, 3, 5, 6, 10, and 12) has been studied experimentally in aqueous solution. These surfactants are chosen to see whether molecular recognition and self-assembly occurs between the oppositely charged conjugated polyelectrolyte and gemini surfactant when the spacer length on the surfactant is similar to the intercharge separation on the polymer. Without surfactants, PBS-PFP exists as aggregates. These are broken up upon addition of gemini surfactants. However, as anticipated, the behavior strongly depends upon spacer length (s). Fluorescence measurements show three surfactant concentration regimes: At low concentrations (<2x10(-6) M) quenching occurs and is most marked with the small spacer 12-2-12; at intermediate concentrations (approximately 2x10(-6)-10(-3) M), fluorescence intensity is constant, with a 12-carbon spacer 12-12-12 showing the strongest fluorescence; above the critical micelle concentration (CMC; approximately 10(-3) M) increases in emission intensity are seen in all cases and are largest with the intermediate spacers 12-5-12 and 12-6-12, where the spacer length most closely matches the distance between monomer units on the polymer. With longer spacer length surfactants, surface tension measurements for concentrations below the CMC reveal the presence of polymer-surfactant aggregates at the air-water interface, possibly reflecting increased hydrophobicity. Above the CMC, small-angle neutron scattering experiments for the 12-6-12 system show the presence of spherical aggregates, both for the pure surfactant and for polyelectrolyte/gemini mixtures. Molecular dynamics simulations help rationalize these observations and show that there is a very fine balance between electrostatic and hydrophobic interactions. With the shortest spacer 12-2-12, Coulombic interactions are dominant, while for the longest spacer 12-12-12 the driving force involves hydrophobic interactions. Qualitatively, with the intermediate 12-5-12 and 12-6-12 systems, the optimum balance is observed between Coulombic and hydrophobic interactions, explaining their strong fluorescence enhancement.  相似文献   

13.
The specific conductance, surface tension, and apparent molar volume properties of aqueous solutions of two series of m-s-m gemini surfactants-one having a constant spacer s(=3) with m=8, 10, 12, and 16 and the other having a constant alkyl chain length m(=12) with variable spacer length 2相似文献   

14.
trans-(1-Methyl-2-adamantylidene)-1-methyladamantane (DMAD, 1b) reacts with Br(2) in chlorinated hydrocarbon solvents to give either a bromonium polybromide ion pair or a substitution product, depending on bromine concentration. The first intermediate is a 1:1 pi-complex having K(f) = 1.85(0.19) x 10(3) M(-)(1) at 25 degrees C, which rapidly evolves to the bromonium tribromide ion pair. At high bromine concentration, which shifts all equilibria involving the counteranion of the ion pair intermediate toward the pentabromide species, this bromonium ion is stable and unable to further evolve into products. Temperature-dependent NMR spectra indicate chemical exchange of Br(+) between the sides of the plane containing the two carbons of the bromonium ion. At very low bromine concentration, no ionic intermediate is detected and the reaction rapidly yields a rearranged substitution product, identified as 10. Under these conditions the disappearance of the pi-complex follows a first-order rate law, and the observed rate constant increases with increasing olefin concentration, showing that product formation implies Br(-) as counteranion of the ionic intermediate, whose formation is a reversible process. A comparison of the results reported here for the bromination of 1b with those previously found for the parent olefin, adamantylideneadamantane (1a), shows that steric strain markedly affects the reactivity of the double bond.  相似文献   

15.
Micellization of three didodecyl dicationic dibromide gemini surfactants with different methylene spacer lengths, 12-s-12,2Br- where s = 3-5 methylene groups, has been investigated in water-ethylene glycol, EG, mixtures with weight percentages of EG up to 50%. Subsequently, effects of the addition of the organic solvent on the micellar growth of these surfactants and on the surfactant concentration range where sphere-to-rod transitions occur were studied by means of steady-state and time-resolved fluorescence quenching and spectroscopic measurements. Results show that an increase in the weight percentage of ethylene glycol added to aqueous 12-s-12,2Br- (s = 3-5) micellar solutions causes the sphere-to-rod transition to occur at higher surfactant concentrations than in pure water. The diminution in the average aggregation number, N(agg), when wt % EG increases, provoked by the decrease in the interfacial Gibbs energy contribution to DeltaG degrees M, is the main factor responsible for this observation. The decrease in N(agg) is accompanied by a decrease in the ionic interactions and the extra packing contribution to the deformation of the surfactants tails, making formation of cylindrical micelles less favorable. Besides, an increase in the solvent content and polarity of the interfacial region does not favor formation of direct ion pairs, decreasing the tendency of micelles to grow.  相似文献   

16.
The aggregation behavior of three long-chain N-aryl imidazolium ionic liquids (ILs), 1-(2,4,6-trimethylphenyl)-3-alkylimidazolium bromide [C(n)pim]Br (n = 10, 12, and 14), in aqueous solutions was systematically explored by surface tension, electrical conductivity, and (1)H NMR. A lower critical micelle concentration (cmc) for the N-aryl imidazolium ILs is observed compared with that for 1,3-dialkylimidazolium ILs [C(n)mim]Br, indicating that the incorporation of the 2,4,6-trimethylphenyl group into a headgroup favors micellization. The enhanced π-π interactions among the adjacent 2,4,6-trimethylphenyl groups weaken the steric hindrance of headgroups and thus lead to a dense arrangement of [C(n)pim]Br molecules at the air-water interface. An analysis of the (1)H NMR spectra revealed that the introduced 2,4,6-trimethylphenyl group may slightly bend into the hydrophobic regions upon micellization. The micelle formation process for [C(n)pim]Br (n = 10, 12, and 14) was found to be enthalpy-driven in the investigated temperature range, which is attributed to the strong electrostatic self-repulsion of the headgroups and the counterions as well as the π-π interactions among headgroups. Strong, stable fluorescence properties are presented by the new N-aryl imidazolium ILs, indicating their potential application in the field of photochemistry.  相似文献   

17.
The forces acting between glass and between mica surfaces in the presence of two cationic gemini surfactants, 1,4 diDDAB (1,4-butyl-bis(dimethyldodecylammonium bromide)) and 1,12 diDDAB (1,12-dodecyl-bis(dimethyldodecylammonium bromide)), have been investigated below the critical micelle concentration (cmc) of the surfactants using two different surface force techniques. In both cases, it was found that a recharging of the surfaces occurred at a surfactant concentration of about 0.1 x cmc, and at all surfactant concentrations investigated repulsive double-layer forces dominated the interaction at large separations. At smaller separations, attractive forces, or regions of separation with (close to) constant force, were observed. This was interpreted as being due to desorption and rearrangement in the adsorbed layer induced by the proximity of a second surface. Analysis of the decay length of the repulsive double-layer force showed that the majority of the gemini surfactants were fully dissociated. However, the degree of ion pair formation, between a gemini surfactant and a bromide counterion, increased with increasing surfactant concentration and was larger for the gemini surfactant with a shorter spacer length.  相似文献   

18.
An equilibrium treatment of complexation of neutral hosts with dicationic guests having univalent counterions includes two possible modes: (1) dissociation of the ion pair prior to interaction of the free dication with the host to produce a complex that is not ion paired and (2) direct complexation of the ion pair to produce an ion paired complex. This treatment is easily modified for complexation of neutral guests by dianionic hosts, or divalent hosts by neutral guests. The treatment was tested by a study of fast-exchange host-guest systems based on paraquats or viologens (G(2+)2X(-)) and crown ethers (H). The bis(hexafluorophosphate) salts of viologens are predominantly ion paired in acetone; the value of the dissociation constant of paraquat bis(hexafluorophosphate) was determined to be 4.64 (+/- 1.86) x 10(-4) M(2). The complex based on dibenzo-24-crown-8 and paraquat bis(hexafluorophosphate) is not ion paired in solution, resulting in concentration dependence of the apparent association constant K(a,exp), (= [complex]/[H][G(2+)2X(-)]) which is well fit by the treatment, according to mode (1), yielding K(ap) = 106 (+/-42) M(-1). However, the four complexes of two different bis(m-phenylene)-32-crown-10 derivatives and bis(p-phenylene)-34-crown-10 with paraquat derivatives are all ion paired in solution and therefore K(a,exp) is not concentration dependent for these systems, mode (2). X-ray crystal structures support these solution-based assessments in that there is clearly ion pairing of the cationic guest with its PF(6)(-) counterions in the solid states of the latter four examples in which access of the counterions to the guests is granted by the relatively large cavities of the hosts and dispositions of the guest species within them.  相似文献   

19.
In a joint experimental and theoretical effort, we have studied dissociative electron attachment (DEA) to the CF3Br molecule at electron energies below 2 eV. Using two variants of the laser photoelectron attachment method with a thermal gas target (T(G) = 300 K), we measured the energy dependent yield for Br- formation over the range E = 3-1200 meV with resolutions of about 3 meV (E < 200 meV) and 35 meV. At the onsets for excitation of one and two quanta for the C-Br stretching mode nu3, downward cusps are detected. With reference to the recommended thermal (300 K) attachment rate coefficient k(A)(CF3Br) = 1.4 x 10(-8) cm3 s(-1), absolute cross sections have been determined for Br- formation. In addition, we studied Br- and (CF3Br)Br- formations with a seeded supersonic target beam (10% CF3Br in helium carrier gas, with a stagnation pressure of 1-4 bars and nozzle temperatures of 300 and 600 K) and found prominent structure in the anion yields due to cluster formation. Using the microwave pulse radiolysis swarm technique, allowing for controlled variation of the electron temperature by microwave heating, we studied the dependence of the absolute DEA rate coefficient on the mean electron energy E over the range of 0.04-2 eV at gas temperatures T(G) ranging from 173 to 600 K. For comparison with the experimental results, semiempirical resonance R-matrix calculations have been carried out. The input for the theory includes the known energetic and structural parameters of the neutral molecule and its anion; the parameters of the resonant anion curves are chosen with reference to the known thermal rate coefficient for the DEA process. For the gas temperature T(G) = 300 K, good overall agreement of the theoretical DEA cross section with the experimental results is observed; moreover, rate coefficients for Br- formation due to Rydberg electron transfer, calculated with both the experimental and the theoretical DEA cross sections, are found to agree with the previously reported absolute experimental values. At T(G) = 300 K, satisfactory agreement is also found between the calculated and experimental attachment rate coefficients for mean electron energies E = 0.04-2 eV. The strong increase of the measured rate coefficients with rising gas temperature, however, could be only partially recovered by the R-matrix results. The differences may result from the influence of thermal excitations of other vibrational modes not included in the theory.  相似文献   

20.
Gemini表面活性剂是通过联接基团将两个具有亲水亲油性质的两亲结构单元在其亲水头基上或靠近亲水头基处以共价键方式连接而成的一类表面活性剂。这类表面活性剂由于联接基团的引入具有比传统单链表面活性剂更高的表面活性,同时分子结构中更多的可调控因素使其在水溶液中表现出更为丰富的自聚集行为,而且分子不同部位结构的改变对分子内或分子间相互作用产生不同的影响,可实现通过分子结构的设计有效调控其自聚集能力和聚集体结构。本综述将从联接基团、烷基链、亲水头基、反离子和其它功能性基团这五个方面概述近些年Gemini表面活性剂水溶液中聚集行为方面的研究进展,总结人们对Gemini表面活性剂分子间相互作用规律的认识,期望对于进一步发展这类高效的表面活性剂体系提供有益的帮助。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号